L(s) = 1 | + (−0.788 + 0.615i)2-s + (−0.694 − 0.719i)3-s + (0.241 − 0.970i)4-s + (0.990 + 0.139i)6-s + (−0.406 + 0.913i)7-s + (0.406 + 0.913i)8-s + (−0.0348 + 0.999i)9-s + (−0.866 + 0.5i)12-s + (−0.469 − 0.882i)13-s + (−0.241 − 0.970i)14-s + (−0.882 − 0.469i)16-s + (−0.999 + 0.0348i)17-s + (−0.587 − 0.809i)18-s + (0.939 − 0.342i)21-s + (−0.642 − 0.766i)23-s + (0.374 − 0.927i)24-s + ⋯ |
L(s) = 1 | + (−0.788 + 0.615i)2-s + (−0.694 − 0.719i)3-s + (0.241 − 0.970i)4-s + (0.990 + 0.139i)6-s + (−0.406 + 0.913i)7-s + (0.406 + 0.913i)8-s + (−0.0348 + 0.999i)9-s + (−0.866 + 0.5i)12-s + (−0.469 − 0.882i)13-s + (−0.241 − 0.970i)14-s + (−0.882 − 0.469i)16-s + (−0.999 + 0.0348i)17-s + (−0.587 − 0.809i)18-s + (0.939 − 0.342i)21-s + (−0.642 − 0.766i)23-s + (0.374 − 0.927i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.910 + 0.413i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.910 + 0.413i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5138244281 + 0.1111256910i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5138244281 + 0.1111256910i\) |
\(L(1)\) |
\(\approx\) |
\(0.5153607799 + 0.05070188743i\) |
\(L(1)\) |
\(\approx\) |
\(0.5153607799 + 0.05070188743i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (-0.788 + 0.615i)T \) |
| 3 | \( 1 + (-0.694 - 0.719i)T \) |
| 7 | \( 1 + (-0.406 + 0.913i)T \) |
| 13 | \( 1 + (-0.469 - 0.882i)T \) |
| 17 | \( 1 + (-0.999 + 0.0348i)T \) |
| 23 | \( 1 + (-0.642 - 0.766i)T \) |
| 29 | \( 1 + (0.961 - 0.275i)T \) |
| 31 | \( 1 + (-0.669 + 0.743i)T \) |
| 37 | \( 1 + (0.587 + 0.809i)T \) |
| 41 | \( 1 + (0.719 - 0.694i)T \) |
| 43 | \( 1 + (0.642 - 0.766i)T \) |
| 47 | \( 1 + (-0.829 + 0.559i)T \) |
| 53 | \( 1 + (-0.529 + 0.848i)T \) |
| 59 | \( 1 + (0.559 - 0.829i)T \) |
| 61 | \( 1 + (-0.374 - 0.927i)T \) |
| 67 | \( 1 + (-0.342 + 0.939i)T \) |
| 71 | \( 1 + (-0.848 + 0.529i)T \) |
| 73 | \( 1 + (0.898 - 0.438i)T \) |
| 79 | \( 1 + (0.990 - 0.139i)T \) |
| 83 | \( 1 + (0.207 + 0.978i)T \) |
| 89 | \( 1 + (0.173 + 0.984i)T \) |
| 97 | \( 1 + (-0.788 + 0.615i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.42521345867562458658013710772, −20.73862634443063731534615529242, −19.729933719754257298075295320484, −19.50595201631891316107016673552, −18.03803434407774904102635155528, −17.75946464199309102271146307943, −16.69186856419585638313999686957, −16.405372602170952748177882068273, −15.58282894265242782220108482931, −14.43227975140991062688130503940, −13.37032717137252835153463281590, −12.56335847059551418628102232421, −11.5755966685438016410444198560, −11.111800355363761106597738610125, −10.24385580293910684032094169648, −9.59183923823910556105766531901, −8.988345499754905871845957019896, −7.71838583615548422651833494337, −6.88901475083150819274288592514, −6.11315455739025871631201138606, −4.580501624388676431173917033, −4.09326022831300169789093889274, −3.103512796359270123479010921304, −1.83860518989969603852043960862, −0.543133983185912269650421472023,
0.63834056944184916450429918479, 1.98166103695886832171710501297, 2.72051361333710145182614630301, 4.653431006499802230733036992606, 5.47531743464966047001112796891, 6.23940097924323607610354036619, 6.82616781147686839699290181997, 7.86224308827807148179608729226, 8.49737799494958707806993817785, 9.45951415363757770896813295798, 10.40614310250744346641779780032, 11.090180323418555611729403348994, 12.113564970339685491072758070796, 12.7226584275016859091642157146, 13.75052888253201312337886127152, 14.691042843712215731374227678193, 15.651155266161295051333383477270, 16.101828246068518336921774499357, 17.09286400847376851739920269393, 17.82519191614546828179734737597, 18.21558456745023617291365180207, 19.13507939550728595114854937967, 19.64575213348943241831601875981, 20.541683185899790604478734144282, 22.02549283848456409487192148511