Properties

Label 1-1045-1045.569-r0-0-0
Degree 11
Conductor 10451045
Sign 0.9700.242i0.970 - 0.242i
Analytic cond. 4.852954.85295
Root an. cond. 4.852954.85295
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.309 + 0.951i)2-s + (−0.809 + 0.587i)3-s + (−0.809 − 0.587i)4-s + (−0.309 − 0.951i)6-s + (−0.809 − 0.587i)7-s + (0.809 − 0.587i)8-s + (0.309 − 0.951i)9-s + 12-s + (−0.309 + 0.951i)13-s + (0.809 − 0.587i)14-s + (0.309 + 0.951i)16-s + (0.309 + 0.951i)17-s + (0.809 + 0.587i)18-s + 21-s − 23-s + (−0.309 + 0.951i)24-s + ⋯
L(s)  = 1  + (−0.309 + 0.951i)2-s + (−0.809 + 0.587i)3-s + (−0.809 − 0.587i)4-s + (−0.309 − 0.951i)6-s + (−0.809 − 0.587i)7-s + (0.809 − 0.587i)8-s + (0.309 − 0.951i)9-s + 12-s + (−0.309 + 0.951i)13-s + (0.809 − 0.587i)14-s + (0.309 + 0.951i)16-s + (0.309 + 0.951i)17-s + (0.809 + 0.587i)18-s + 21-s − 23-s + (−0.309 + 0.951i)24-s + ⋯

Functional equation

Λ(s)=(1045s/2ΓR(s)L(s)=((0.9700.242i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.970 - 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1045s/2ΓR(s)L(s)=((0.9700.242i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.970 - 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 10451045    =    511195 \cdot 11 \cdot 19
Sign: 0.9700.242i0.970 - 0.242i
Analytic conductor: 4.852954.85295
Root analytic conductor: 4.852954.85295
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1045(569,)\chi_{1045} (569, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 1045, (0: ), 0.9700.242i)(1,\ 1045,\ (0:\ ),\ 0.970 - 0.242i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.34296651360.04215966795i0.3429665136 - 0.04215966795i
L(12)L(\frac12) \approx 0.34296651360.04215966795i0.3429665136 - 0.04215966795i
L(1)L(1) \approx 0.4548600805+0.2420944032i0.4548600805 + 0.2420944032i
L(1)L(1) \approx 0.4548600805+0.2420944032i0.4548600805 + 0.2420944032i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
11 1 1
19 1 1
good2 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
3 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
7 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
13 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
17 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
23 1T 1 - T
29 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
31 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
37 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
41 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
43 1+T 1 + T
47 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
53 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
59 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
61 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
67 1+T 1 + T
71 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
73 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
79 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
83 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
89 1T 1 - T
97 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−21.81968324476723487957311540586, −20.60082141023963195426225471396, −20.01116218849914423279227453810, −18.987843003971627905963679338312, −18.635814574746116731558818700305, −17.86141851775092489574477261132, −17.12376749057658505741369682850, −16.32615380194318577350363266237, −15.511996133886287766074916217625, −14.14909128986421006927475523696, −13.30705915789712285109866401445, −12.61539973378782782820655544278, −12.082045691385163199127014084988, −11.34894368461731142042730790628, −10.38599893540885432645930863123, −9.78705421868169889618770593989, −8.82418021468702921860105418816, −7.78778916841854888412323373585, −7.068935968254565135860171008192, −5.773692298232011161499322739828, −5.25402688146794948079464901503, −3.99403219891259908495918356597, −2.88374406410455142618704620052, −2.12782144789846372403009793372, −0.85526618304564913751494492371, 0.24704737836385679077592904813, 1.66459471064338123885467229207, 3.66933362696989145048028768407, 4.158262511772334790760545061546, 5.23395302163544445132876545387, 6.06844597513559303626355842490, 6.71777203555932320399973222845, 7.48881663220829915117300817279, 8.69677310430059740064954050068, 9.53446169585495453490177437421, 10.15236996110709096596892693335, 10.83224141839716217578873938042, 12.02498679778995092295111560172, 12.84214694636383163963542677970, 13.83098501563859294849138918495, 14.61047527198421177118411483604, 15.48650431643691158748680704933, 16.21580708099084910906324452772, 16.73140338573600012563543865453, 17.32445852628715886251630743405, 18.15623208377893577686566774441, 19.08560711135058406810471938707, 19.71080943257989983986851891282, 20.86343393420598142587566690675, 21.87680307252536513399423759469

Graph of the ZZ-function along the critical line