L(s) = 1 | + (0.993 + 0.116i)2-s + (0.973 + 0.230i)4-s + (0.0581 − 0.998i)5-s + (0.686 + 0.727i)7-s + (0.939 + 0.342i)8-s + (0.173 − 0.984i)10-s + (0.0581 + 0.998i)11-s + (0.597 + 0.802i)14-s + (0.893 + 0.448i)16-s + (0.173 − 0.984i)17-s + (0.939 + 0.342i)19-s + (0.286 − 0.957i)20-s + (−0.0581 + 0.998i)22-s + (−0.686 + 0.727i)23-s + (−0.993 − 0.116i)25-s + ⋯ |
L(s) = 1 | + (0.993 + 0.116i)2-s + (0.973 + 0.230i)4-s + (0.0581 − 0.998i)5-s + (0.686 + 0.727i)7-s + (0.939 + 0.342i)8-s + (0.173 − 0.984i)10-s + (0.0581 + 0.998i)11-s + (0.597 + 0.802i)14-s + (0.893 + 0.448i)16-s + (0.173 − 0.984i)17-s + (0.939 + 0.342i)19-s + (0.286 − 0.957i)20-s + (−0.0581 + 0.998i)22-s + (−0.686 + 0.727i)23-s + (−0.993 − 0.116i)25-s + ⋯ |
Λ(s)=(=(1053s/2ΓR(s)L(s)(0.950+0.311i)Λ(1−s)
Λ(s)=(=(1053s/2ΓR(s)L(s)(0.950+0.311i)Λ(1−s)
Degree: |
1 |
Conductor: |
1053
= 34⋅13
|
Sign: |
0.950+0.311i
|
Analytic conductor: |
4.89011 |
Root analytic conductor: |
4.89011 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1053(1024,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1053, (0: ), 0.950+0.311i)
|
Particular Values
L(21) |
≈ |
3.330226033+0.5320491021i |
L(21) |
≈ |
3.330226033+0.5320491021i |
L(1) |
≈ |
2.169518684+0.1690739609i |
L(1) |
≈ |
2.169518684+0.1690739609i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 13 | 1 |
good | 2 | 1+(0.993+0.116i)T |
| 5 | 1+(0.0581−0.998i)T |
| 7 | 1+(0.686+0.727i)T |
| 11 | 1+(0.0581+0.998i)T |
| 17 | 1+(0.173−0.984i)T |
| 19 | 1+(0.939+0.342i)T |
| 23 | 1+(−0.686+0.727i)T |
| 29 | 1+(0.396+0.918i)T |
| 31 | 1+(0.286+0.957i)T |
| 37 | 1+(−0.766−0.642i)T |
| 41 | 1+(−0.597−0.802i)T |
| 43 | 1+(−0.0581−0.998i)T |
| 47 | 1+(0.286−0.957i)T |
| 53 | 1+(−0.5+0.866i)T |
| 59 | 1+(0.0581−0.998i)T |
| 61 | 1+(−0.286+0.957i)T |
| 67 | 1+(0.993−0.116i)T |
| 71 | 1+(−0.766−0.642i)T |
| 73 | 1+(0.939+0.342i)T |
| 79 | 1+(0.396+0.918i)T |
| 83 | 1+(−0.396−0.918i)T |
| 89 | 1+(−0.766+0.642i)T |
| 97 | 1+(0.835−0.549i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.54199242488135069271244394772, −20.93339120318355370095241216192, −20.03883519673256767549623762683, −19.28428452169408271332088859713, −18.53294381204506640882876341873, −17.49746553318752888491197117916, −16.71539113536115668006077390810, −15.78342145296490184299219871417, −14.995975640662543134061334729727, −14.213841579272380189501140617378, −13.82057366153870081620675600462, −13.00339795796499169343402094308, −11.72263503215561299264029903352, −11.32476819882085423198139803538, −10.502834693766455028245976143101, −9.88290048595957592876423374869, −8.18192062503619989094085260090, −7.63957875377139989352502782467, −6.5121747540027064802887783502, −6.05075752119140288812146991714, −4.90733080606376830135570573582, −3.95951465118165159056242338981, −3.24787957554500245581538174447, −2.28908866731653117198052511241, −1.147139595784508027552580995183,
1.42148016161094724836754139009, 2.113659252746066377677444537340, 3.33269857942684287085430412058, 4.38862494680330882166569754203, 5.280317610272232351916272157860, 5.44884860479800485951206080834, 6.90558782828392619800087788565, 7.64526002673299148433872766123, 8.57325738919258168388506187991, 9.48545487008924911393567353157, 10.49205071949584022344758969825, 11.78800183615814620298170457144, 12.04474787194609946475081638161, 12.71376812685722443649189888211, 13.90194302268637831724070396223, 14.20466525654606707962153628601, 15.54426025957852592543985784813, 15.69307846313969720714885921347, 16.72345988050784191646164864430, 17.58440193699660007692817410195, 18.28953061921969787398685081667, 19.59801678266371001670439844575, 20.356185086941471862527747345752, 20.751863801047020139773880314821, 21.59388654080498869986925563276