L(s) = 1 | + (0.549 − 0.835i)2-s + (−0.396 − 0.918i)4-s + (−0.957 − 0.286i)5-s + (−0.802 + 0.597i)7-s + (−0.984 − 0.173i)8-s + (−0.766 + 0.642i)10-s + (−0.957 + 0.286i)11-s + (0.0581 + 0.998i)14-s + (−0.686 + 0.727i)16-s + (0.766 − 0.642i)17-s + (−0.984 − 0.173i)19-s + (0.116 + 0.993i)20-s + (−0.286 + 0.957i)22-s + (0.597 − 0.802i)23-s + (0.835 + 0.549i)25-s + ⋯ |
L(s) = 1 | + (0.549 − 0.835i)2-s + (−0.396 − 0.918i)4-s + (−0.957 − 0.286i)5-s + (−0.802 + 0.597i)7-s + (−0.984 − 0.173i)8-s + (−0.766 + 0.642i)10-s + (−0.957 + 0.286i)11-s + (0.0581 + 0.998i)14-s + (−0.686 + 0.727i)16-s + (0.766 − 0.642i)17-s + (−0.984 − 0.173i)19-s + (0.116 + 0.993i)20-s + (−0.286 + 0.957i)22-s + (0.597 − 0.802i)23-s + (0.835 + 0.549i)25-s + ⋯ |
Λ(s)=(=(1053s/2ΓR(s)L(s)(0.981−0.192i)Λ(1−s)
Λ(s)=(=(1053s/2ΓR(s)L(s)(0.981−0.192i)Λ(1−s)
Degree: |
1 |
Conductor: |
1053
= 34⋅13
|
Sign: |
0.981−0.192i
|
Analytic conductor: |
4.89011 |
Root analytic conductor: |
4.89011 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1053(734,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1053, (0: ), 0.981−0.192i)
|
Particular Values
L(21) |
≈ |
0.8501602070−0.08261965380i |
L(21) |
≈ |
0.8501602070−0.08261965380i |
L(1) |
≈ |
0.8013285654−0.3566252511i |
L(1) |
≈ |
0.8013285654−0.3566252511i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 13 | 1 |
good | 2 | 1+(0.549−0.835i)T |
| 5 | 1+(−0.957−0.286i)T |
| 7 | 1+(−0.802+0.597i)T |
| 11 | 1+(−0.957+0.286i)T |
| 17 | 1+(0.766−0.642i)T |
| 19 | 1+(−0.984−0.173i)T |
| 23 | 1+(0.597−0.802i)T |
| 29 | 1+(−0.893+0.448i)T |
| 31 | 1+(−0.116+0.993i)T |
| 37 | 1+(0.342−0.939i)T |
| 41 | 1+(0.998−0.0581i)T |
| 43 | 1+(0.286+0.957i)T |
| 47 | 1+(0.116+0.993i)T |
| 53 | 1+(0.5+0.866i)T |
| 59 | 1+(0.957+0.286i)T |
| 61 | 1+(−0.993+0.116i)T |
| 67 | 1+(0.549+0.835i)T |
| 71 | 1+(0.342−0.939i)T |
| 73 | 1+(0.984+0.173i)T |
| 79 | 1+(0.893−0.448i)T |
| 83 | 1+(0.448+0.893i)T |
| 89 | 1+(0.342+0.939i)T |
| 97 | 1+(0.230−0.973i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.66139090155935900029562482042, −20.94177678663414700210475521350, −20.02767426666599462133224700389, −18.97214736314405452176501282188, −18.6486462179858706312856375324, −17.28961527701319180989076326769, −16.712491454616879673512527525594, −16.000496184862574973281629522157, −15.2253880284761507911426639759, −14.75252970709974990934914681576, −13.56228098664183515090489687521, −13.03250225183294999186738118073, −12.28834701092439884432003017414, −11.2795989157821974268390426170, −10.43178714838197764971844547882, −9.38241035408030247422801710756, −8.209764130823375560782210583605, −7.726073973587378142295787783275, −6.92223273955046812322441231872, −6.06713612083372422187482431974, −5.16327735625799307214098585464, −3.95567805372525494475073502866, −3.593281945949247458709044490998, −2.53172685876508710556699186654, −0.39896768156687140718118601903,
0.85607535991650586271894155382, 2.39707842415118859663194528819, 3.02944986087642014627521679186, 3.995029734859520344444029429065, 4.89313358837641274823733030377, 5.64358542396974536651077831292, 6.7366300267606426809300244334, 7.77265571268495329101792862914, 8.86528465218709699849361684087, 9.47508811132910629144689115706, 10.606445406946717109556890826980, 11.111803492921467590775251082562, 12.36662113631249315414248288710, 12.496234182651596743604415252592, 13.26889880428925461809164995769, 14.49592720611303971775852085663, 15.111326623773617467465145108937, 15.91971842020472467922614234620, 16.52912176816654525246772736692, 17.98710466639866274537684494014, 18.676607998410855217204586783608, 19.287584647226436269387171797080, 19.90928188017042487059663586697, 20.84758732352621309956329961325, 21.29422320790291346241590935270