L(s) = 1 | + (0.809 + 0.587i)3-s − 7-s + (0.309 + 0.951i)9-s + (−0.309 + 0.951i)11-s + (0.309 + 0.951i)13-s + (−0.809 + 0.587i)17-s + (0.809 − 0.587i)19-s + (−0.809 − 0.587i)21-s + (−0.309 + 0.951i)23-s + (−0.309 + 0.951i)27-s + (−0.809 − 0.587i)29-s + (0.809 − 0.587i)31-s + (−0.809 + 0.587i)33-s + (0.309 + 0.951i)37-s + (−0.309 + 0.951i)39-s + ⋯ |
L(s) = 1 | + (0.809 + 0.587i)3-s − 7-s + (0.309 + 0.951i)9-s + (−0.309 + 0.951i)11-s + (0.309 + 0.951i)13-s + (−0.809 + 0.587i)17-s + (0.809 − 0.587i)19-s + (−0.809 − 0.587i)21-s + (−0.309 + 0.951i)23-s + (−0.309 + 0.951i)27-s + (−0.809 − 0.587i)29-s + (0.809 − 0.587i)31-s + (−0.809 + 0.587i)33-s + (0.309 + 0.951i)37-s + (−0.309 + 0.951i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.425 + 0.904i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.425 + 0.904i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8766659312 + 1.381404465i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8766659312 + 1.381404465i\) |
\(L(1)\) |
\(\approx\) |
\(1.081388548 + 0.5088628249i\) |
\(L(1)\) |
\(\approx\) |
\(1.081388548 + 0.5088628249i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (0.809 + 0.587i)T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 + (-0.309 + 0.951i)T \) |
| 13 | \( 1 + (0.309 + 0.951i)T \) |
| 17 | \( 1 + (-0.809 + 0.587i)T \) |
| 19 | \( 1 + (0.809 - 0.587i)T \) |
| 23 | \( 1 + (-0.309 + 0.951i)T \) |
| 29 | \( 1 + (-0.809 - 0.587i)T \) |
| 31 | \( 1 + (0.809 - 0.587i)T \) |
| 37 | \( 1 + (0.309 + 0.951i)T \) |
| 41 | \( 1 + (0.309 + 0.951i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (0.809 + 0.587i)T \) |
| 53 | \( 1 + (-0.809 - 0.587i)T \) |
| 59 | \( 1 + (-0.309 - 0.951i)T \) |
| 61 | \( 1 + (0.309 - 0.951i)T \) |
| 67 | \( 1 + (0.809 - 0.587i)T \) |
| 71 | \( 1 + (0.809 + 0.587i)T \) |
| 73 | \( 1 + (0.309 - 0.951i)T \) |
| 79 | \( 1 + (0.809 + 0.587i)T \) |
| 83 | \( 1 + (0.809 - 0.587i)T \) |
| 89 | \( 1 + (0.309 - 0.951i)T \) |
| 97 | \( 1 + (-0.809 - 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−29.460700846449877005306814306095, −28.61410971977832494221238475951, −26.94789320567263350275019167036, −26.262641828281791479616076171637, −25.12645808754741957099875940935, −24.43765355289426877635143857338, −23.1418415768954438213430350305, −22.12063142293760181826736299106, −20.66149888086729297366626143673, −19.88385278796923605576659389532, −18.80243520614971783169961517363, −18.02695019581774911426945875832, −16.34985778180431588617065991601, −15.44460274203615558660128542124, −14.02133146096858480011795136366, −13.22079360501403320305683916530, −12.23153643508396595840924423055, −10.58174974812249823811777080684, −9.26916468857723266957295390019, −8.231898837148160993256276256272, −6.97226152605682535644106722173, −5.76120343778232217872878691512, −3.6278295194698934810972369339, −2.63975559294522670082553493352, −0.64137602175394656600372314701,
2.11339860590120723361623431921, 3.520180667568283749031222535, 4.70779111615043734242485773058, 6.507893844168187548348781212775, 7.828921442575390296806767069154, 9.30204804026100103237633552484, 9.868203450849767536774734686318, 11.37097444406704119480845023184, 12.980353061389130288440278164480, 13.78784386483765987010101211287, 15.22930769967971878173273303110, 15.84984227122171565308816471233, 17.10740479751194009774167731158, 18.63529763095557945643152890254, 19.65527082418544219971175256652, 20.4480744630058923183436069852, 21.65999650981566356339488933406, 22.50956893417377456953233178968, 23.81812575852650052871137352290, 25.12369461741461590002489448169, 26.08803405214710040190901032169, 26.53137720985088388777766558092, 28.08373105489283670368226275825, 28.74431315818797254959667785543, 30.24615714896790073330705470208