Properties

Label 1-11-11.5-r0-0-0
Degree 11
Conductor 1111
Sign 0.624+0.781i0.624 + 0.781i
Analytic cond. 0.05108370.0510837
Root an. cond. 0.05108370.0510837
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.809 + 0.587i)2-s + (0.309 + 0.951i)3-s + (0.309 − 0.951i)4-s + (−0.809 − 0.587i)5-s + (−0.809 − 0.587i)6-s + (0.309 − 0.951i)7-s + (0.309 + 0.951i)8-s + (−0.809 + 0.587i)9-s + 10-s + 12-s + (−0.809 + 0.587i)13-s + (0.309 + 0.951i)14-s + (0.309 − 0.951i)15-s + (−0.809 − 0.587i)16-s + (−0.809 − 0.587i)17-s + (0.309 − 0.951i)18-s + ⋯
L(s)  = 1  + (−0.809 + 0.587i)2-s + (0.309 + 0.951i)3-s + (0.309 − 0.951i)4-s + (−0.809 − 0.587i)5-s + (−0.809 − 0.587i)6-s + (0.309 − 0.951i)7-s + (0.309 + 0.951i)8-s + (−0.809 + 0.587i)9-s + 10-s + 12-s + (−0.809 + 0.587i)13-s + (0.309 + 0.951i)14-s + (0.309 − 0.951i)15-s + (−0.809 − 0.587i)16-s + (−0.809 − 0.587i)17-s + (0.309 − 0.951i)18-s + ⋯

Functional equation

Λ(s)=(11s/2ΓR(s)L(s)=((0.624+0.781i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 11 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.624 + 0.781i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(11s/2ΓR(s)L(s)=((0.624+0.781i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 11 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.624 + 0.781i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 1111
Sign: 0.624+0.781i0.624 + 0.781i
Analytic conductor: 0.05108370.0510837
Root analytic conductor: 0.05108370.0510837
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ11(5,)\chi_{11} (5, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 11, (0: ), 0.624+0.781i)(1,\ 11,\ (0:\ ),\ 0.624 + 0.781i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.3561278323+0.1713091896i0.3561278323 + 0.1713091896i
L(12)L(\frac12) \approx 0.3561278323+0.1713091896i0.3561278323 + 0.1713091896i
L(1)L(1) \approx 0.5805311136+0.2129383511i0.5805311136 + 0.2129383511i
L(1)L(1) \approx 0.5805311136+0.2129383511i0.5805311136 + 0.2129383511i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad11 1 1
good2 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
3 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
5 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
7 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
13 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
17 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
19 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
23 1+T 1 + T
29 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
31 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
37 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
41 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
43 1+T 1 + T
47 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
53 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
59 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
61 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
67 1+T 1 + T
71 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
73 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
79 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
83 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
89 1+T 1 + T
97 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−45.992857876740975256429899631195, −44.166582569894431073202390852504, −42.73776464425257506936753077255, −41.21327507583455505413149754563, −39.44319270094730994698826415607, −37.8879189468480404229255113447, −36.830721606501950842779862714074, −35.103589002333235032242136313328, −34.5972204305548442140229585985, −31.32845534136625909536474896094, −30.50526927558957657974996791575, −28.9996374398845296933700159472, −27.39714864997876724666794402141, −25.85623737581020255318374607184, −24.33661634366136980503787359604, −22.15714139133311048098743192458, −19.9906260243439205467866780351, −18.89344173569352104267570432504, −17.68807603791082994478424454831, −15.169105282641905401132167592826, −12.62329617142335150431012578865, −11.27579624197347705420756999010, −8.704161065911558045022104093621, −7.20692647129910428845946072570, −2.69600408486917233690482283449, 4.62935366251112260134094795549, 7.66185762868686205184568530025, 9.32576278595562580840034682186, 11.08604090734966310677523591806, 14.391345209913737768557754830718, 15.95701473940678460989492756920, 17.0589877129008589583878475262, 19.50752880683188820541576949914, 20.61265054372333079178400924558, 23.13907860578284012046137252354, 24.72083578855277620657306332268, 26.68452916273036899287058730843, 27.22591812668902221184551478255, 28.83880063287434417342469151843, 31.42427523311059427895530059687, 32.83760075474434132336180921300, 33.99262875889834913169724447328, 35.76575289158548786947394304876, 36.92818035598601603325885144168, 38.48574617295503178661726067050, 39.76404580393091217961458428396, 42.30708641995038782073842321800, 43.36021389069667485514209185454, 44.1807543932131508618010042867, 45.75877859475394468803196671809

Graph of the ZZ-function along the critical line