L(s) = 1 | + (0.984 − 0.173i)2-s + (0.939 − 0.342i)4-s + (−0.642 + 0.766i)5-s + (0.766 + 0.642i)7-s + (0.866 − 0.5i)8-s + (−0.5 + 0.866i)10-s + (−0.5 − 0.866i)11-s + (0.342 + 0.939i)13-s + (0.866 + 0.5i)14-s + (0.766 − 0.642i)16-s + (0.342 − 0.939i)17-s + (−0.984 − 0.173i)19-s + (−0.342 + 0.939i)20-s + (−0.642 − 0.766i)22-s + (−0.866 − 0.5i)23-s + ⋯ |
L(s) = 1 | + (0.984 − 0.173i)2-s + (0.939 − 0.342i)4-s + (−0.642 + 0.766i)5-s + (0.766 + 0.642i)7-s + (0.866 − 0.5i)8-s + (−0.5 + 0.866i)10-s + (−0.5 − 0.866i)11-s + (0.342 + 0.939i)13-s + (0.866 + 0.5i)14-s + (0.766 − 0.642i)16-s + (0.342 − 0.939i)17-s + (−0.984 − 0.173i)19-s + (−0.342 + 0.939i)20-s + (−0.642 − 0.766i)22-s + (−0.866 − 0.5i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 111 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0953i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 111 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0953i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.743465261 + 0.08328697710i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.743465261 + 0.08328697710i\) |
\(L(1)\) |
\(\approx\) |
\(1.677937917 + 0.02118761036i\) |
\(L(1)\) |
\(\approx\) |
\(1.677937917 + 0.02118761036i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 37 | \( 1 \) |
good | 2 | \( 1 + (0.984 - 0.173i)T \) |
| 5 | \( 1 + (-0.642 + 0.766i)T \) |
| 7 | \( 1 + (0.766 + 0.642i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.342 + 0.939i)T \) |
| 17 | \( 1 + (0.342 - 0.939i)T \) |
| 19 | \( 1 + (-0.984 - 0.173i)T \) |
| 23 | \( 1 + (-0.866 - 0.5i)T \) |
| 29 | \( 1 + (-0.866 + 0.5i)T \) |
| 31 | \( 1 + iT \) |
| 41 | \( 1 + (-0.939 + 0.342i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (0.5 - 0.866i)T \) |
| 53 | \( 1 + (-0.766 + 0.642i)T \) |
| 59 | \( 1 + (0.642 + 0.766i)T \) |
| 61 | \( 1 + (-0.342 - 0.939i)T \) |
| 67 | \( 1 + (-0.766 - 0.642i)T \) |
| 71 | \( 1 + (-0.173 + 0.984i)T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (0.642 - 0.766i)T \) |
| 83 | \( 1 + (0.939 + 0.342i)T \) |
| 89 | \( 1 + (-0.642 - 0.766i)T \) |
| 97 | \( 1 + (0.866 + 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−29.863365725677719913067023277054, −28.34320356344548778546472284279, −27.62699110756913475736556787109, −26.1356090806147460704844812636, −25.152318521535251081483008162, −23.89238556401654785669199104929, −23.565795416893157210295434909021, −22.44936821716673734265401544036, −20.926650109536433889505996314854, −20.532719542704272226185890798574, −19.45748949826558885101302874890, −17.60108379005367992985244133728, −16.71753439097496045008453546303, −15.4597396958911640312968452082, −14.78475146369065951581057837585, −13.29798336620951836881986862869, −12.58206843617100581041669860018, −11.40787845023094087550877760176, −10.29810811564453882458247207372, −8.15054450776068222940816587461, −7.58929513236281465376139240118, −5.83704331563918706530893900935, −4.6312383228602887678012047127, −3.765715894379716672160230030687, −1.78447009789676705486081335680,
2.13531337102251474395769251222, 3.39994295291918906938114546743, 4.71459664534313374944210896309, 6.02705871397096934475118494781, 7.23780852433983676871485113361, 8.560547487780215220956472205211, 10.54460699123332370458188549645, 11.39269891246136272894840467492, 12.18422311849354539477985263959, 13.75380048961261354539841809462, 14.536019979554622032335866634108, 15.53895714122940737783670985934, 16.468561455944228004163282342411, 18.40329920691197119781091337, 19.03024880787325871658380589675, 20.402804244456466690233170988918, 21.46622137891676902072682240136, 22.13110996756868548042653020256, 23.46738512814173341821839122407, 23.960508876468939673287758643175, 25.18734144013051989962913346866, 26.352446585175161291676776250475, 27.530910766336763648456498225986, 28.61224762916563692145429502018, 29.779467293217533210110174582425