Properties

Label 1-1140-1140.227-r0-0-0
Degree 11
Conductor 11401140
Sign 0.5250.850i0.525 - 0.850i
Analytic cond. 5.294135.29413
Root an. cond. 5.294135.29413
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·7-s + 11-s + i·13-s i·17-s i·23-s − 29-s + 31-s i·37-s + 41-s + i·43-s + i·47-s − 49-s i·53-s + 59-s + 61-s + ⋯
L(s)  = 1  i·7-s + 11-s + i·13-s i·17-s i·23-s − 29-s + 31-s i·37-s + 41-s + i·43-s + i·47-s − 49-s i·53-s + 59-s + 61-s + ⋯

Functional equation

Λ(s)=(1140s/2ΓR(s)L(s)=((0.5250.850i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1140 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.525 - 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1140s/2ΓR(s)L(s)=((0.5250.850i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1140 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.525 - 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 11401140    =    2235192^{2} \cdot 3 \cdot 5 \cdot 19
Sign: 0.5250.850i0.525 - 0.850i
Analytic conductor: 5.294135.29413
Root analytic conductor: 5.294135.29413
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1140(227,)\chi_{1140} (227, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 1140, (0: ), 0.5250.850i)(1,\ 1140,\ (0:\ ),\ 0.525 - 0.850i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.3362668680.7450175743i1.336266868 - 0.7450175743i
L(12)L(\frac12) \approx 1.3362668680.7450175743i1.336266868 - 0.7450175743i
L(1)L(1) \approx 1.1083500070.2098103474i1.108350007 - 0.2098103474i
L(1)L(1) \approx 1.1083500070.2098103474i1.108350007 - 0.2098103474i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
5 1 1
19 1 1
good7 1 1
11 1 1
13 1 1
17 1 1
23 1 1
29 1 1
31 1 1
37 1+T 1 + T
41 1 1
43 1+iT 1 + iT
47 1 1
53 1 1
59 1 1
61 1iT 1 - iT
67 1 1
71 1 1
73 1 1
79 1 1
83 1 1
89 1iT 1 - iT
97 1 1
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−21.575011138846668712224732143396, −20.6835119289548769772196409706, −19.79834918808183066046926059757, −19.17600527876318025805194026695, −18.405781214861395421848575686885, −17.46551858529879389703087303229, −17.02002837784977385221616335621, −15.831909437712958714914164881991, −15.19708966546148339305869957400, −14.64302852648811914873356827816, −13.55759226123949781055492987465, −12.76388708071169163515825909418, −11.99703338522357092385887001589, −11.33432967237147793201900532704, −10.29592639816103086454174044716, −9.4774010736928884397553149605, −8.65760608694122888000912995183, −7.96407687614091383131749858434, −6.86171980445668254924658914292, −5.91593191757778259348781863408, −5.370132129948515283360612070291, −4.11251928264741153911859287473, −3.27081130072115556938431777687, −2.21485891047865645352248187746, −1.184972468918150498289309812, 0.71165310093034184665319250383, 1.783045237148080291511724263818, 2.97451212993058949247932467398, 4.14265329594566012291459555743, 4.51554491526329991881098964057, 5.882587718525049503828577341616, 6.81952349427560957588989580341, 7.30821275530483636605130780183, 8.44648330654165149349784435159, 9.35392559139330061841927476510, 9.9595352214427649598442903143, 11.11291555444774113617915262578, 11.556756101634639531322049435265, 12.58949752490716011971166919175, 13.46438966619363924779848887805, 14.31622727037992969868774523576, 14.61013330133643177659282021498, 16.11314613817821335740406144884, 16.424340368834563620282092955261, 17.312182698563445647183059369229, 17.991750515137432745135968883506, 19.11393833476442836157969796194, 19.51855262684559421183720665281, 20.58553473059226600797214372005, 20.933810409652128191331577434664

Graph of the ZZ-function along the critical line