L(s) = 1 | − i·7-s + 11-s + i·13-s − i·17-s − i·23-s − 29-s + 31-s − i·37-s + 41-s + i·43-s + i·47-s − 49-s − i·53-s + 59-s + 61-s + ⋯ |
L(s) = 1 | − i·7-s + 11-s + i·13-s − i·17-s − i·23-s − 29-s + 31-s − i·37-s + 41-s + i·43-s + i·47-s − 49-s − i·53-s + 59-s + 61-s + ⋯ |
Λ(s)=(=(1140s/2ΓR(s)L(s)(0.525−0.850i)Λ(1−s)
Λ(s)=(=(1140s/2ΓR(s)L(s)(0.525−0.850i)Λ(1−s)
Degree: |
1 |
Conductor: |
1140
= 22⋅3⋅5⋅19
|
Sign: |
0.525−0.850i
|
Analytic conductor: |
5.29413 |
Root analytic conductor: |
5.29413 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1140(227,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1140, (0: ), 0.525−0.850i)
|
Particular Values
L(21) |
≈ |
1.336266868−0.7450175743i |
L(21) |
≈ |
1.336266868−0.7450175743i |
L(1) |
≈ |
1.108350007−0.2098103474i |
L(1) |
≈ |
1.108350007−0.2098103474i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
| 19 | 1 |
good | 7 | 1 |
| 11 | 1 |
| 13 | 1 |
| 17 | 1 |
| 23 | 1 |
| 29 | 1 |
| 31 | 1 |
| 37 | 1+T |
| 41 | 1 |
| 43 | 1+iT |
| 47 | 1 |
| 53 | 1 |
| 59 | 1 |
| 61 | 1−iT |
| 67 | 1 |
| 71 | 1 |
| 73 | 1 |
| 79 | 1 |
| 83 | 1 |
| 89 | 1−iT |
| 97 | 1 |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.575011138846668712224732143396, −20.6835119289548769772196409706, −19.79834918808183066046926059757, −19.17600527876318025805194026695, −18.405781214861395421848575686885, −17.46551858529879389703087303229, −17.02002837784977385221616335621, −15.831909437712958714914164881991, −15.19708966546148339305869957400, −14.64302852648811914873356827816, −13.55759226123949781055492987465, −12.76388708071169163515825909418, −11.99703338522357092385887001589, −11.33432967237147793201900532704, −10.29592639816103086454174044716, −9.4774010736928884397553149605, −8.65760608694122888000912995183, −7.96407687614091383131749858434, −6.86171980445668254924658914292, −5.91593191757778259348781863408, −5.370132129948515283360612070291, −4.11251928264741153911859287473, −3.27081130072115556938431777687, −2.21485891047865645352248187746, −1.184972468918150498289309812,
0.71165310093034184665319250383, 1.783045237148080291511724263818, 2.97451212993058949247932467398, 4.14265329594566012291459555743, 4.51554491526329991881098964057, 5.882587718525049503828577341616, 6.81952349427560957588989580341, 7.30821275530483636605130780183, 8.44648330654165149349784435159, 9.35392559139330061841927476510, 9.9595352214427649598442903143, 11.11291555444774113617915262578, 11.556756101634639531322049435265, 12.58949752490716011971166919175, 13.46438966619363924779848887805, 14.31622727037992969868774523576, 14.61013330133643177659282021498, 16.11314613817821335740406144884, 16.424340368834563620282092955261, 17.312182698563445647183059369229, 17.991750515137432745135968883506, 19.11393833476442836157969796194, 19.51855262684559421183720665281, 20.58553473059226600797214372005, 20.933810409652128191331577434664