L(s) = 1 | − i·7-s + 11-s + i·13-s − i·17-s − i·23-s − 29-s + 31-s − i·37-s + 41-s + i·43-s + i·47-s − 49-s − i·53-s + 59-s + 61-s + ⋯ |
L(s) = 1 | − i·7-s + 11-s + i·13-s − i·17-s − i·23-s − 29-s + 31-s − i·37-s + 41-s + i·43-s + i·47-s − 49-s − i·53-s + 59-s + 61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1140 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.525 - 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1140 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.525 - 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.336266868 - 0.7450175743i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.336266868 - 0.7450175743i\) |
\(L(1)\) |
\(\approx\) |
\(1.108350007 - 0.2098103474i\) |
\(L(1)\) |
\(\approx\) |
\(1.108350007 - 0.2098103474i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 \) |
good | 7 | \( 1 \) |
| 11 | \( 1 \) |
| 13 | \( 1 \) |
| 17 | \( 1 \) |
| 23 | \( 1 \) |
| 29 | \( 1 \) |
| 31 | \( 1 \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 \) |
| 53 | \( 1 \) |
| 59 | \( 1 \) |
| 61 | \( 1 - iT \) |
| 67 | \( 1 \) |
| 71 | \( 1 \) |
| 73 | \( 1 \) |
| 79 | \( 1 \) |
| 83 | \( 1 \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.575011138846668712224732143396, −20.6835119289548769772196409706, −19.79834918808183066046926059757, −19.17600527876318025805194026695, −18.405781214861395421848575686885, −17.46551858529879389703087303229, −17.02002837784977385221616335621, −15.831909437712958714914164881991, −15.19708966546148339305869957400, −14.64302852648811914873356827816, −13.55759226123949781055492987465, −12.76388708071169163515825909418, −11.99703338522357092385887001589, −11.33432967237147793201900532704, −10.29592639816103086454174044716, −9.4774010736928884397553149605, −8.65760608694122888000912995183, −7.96407687614091383131749858434, −6.86171980445668254924658914292, −5.91593191757778259348781863408, −5.370132129948515283360612070291, −4.11251928264741153911859287473, −3.27081130072115556938431777687, −2.21485891047865645352248187746, −1.184972468918150498289309812,
0.71165310093034184665319250383, 1.783045237148080291511724263818, 2.97451212993058949247932467398, 4.14265329594566012291459555743, 4.51554491526329991881098964057, 5.882587718525049503828577341616, 6.81952349427560957588989580341, 7.30821275530483636605130780183, 8.44648330654165149349784435159, 9.35392559139330061841927476510, 9.9595352214427649598442903143, 11.11291555444774113617915262578, 11.556756101634639531322049435265, 12.58949752490716011971166919175, 13.46438966619363924779848887805, 14.31622727037992969868774523576, 14.61013330133643177659282021498, 16.11314613817821335740406144884, 16.424340368834563620282092955261, 17.312182698563445647183059369229, 17.991750515137432745135968883506, 19.11393833476442836157969796194, 19.51855262684559421183720665281, 20.58553473059226600797214372005, 20.933810409652128191331577434664