Properties

Label 1-116-116.63-r1-0-0
Degree 11
Conductor 116116
Sign 0.727+0.686i-0.727 + 0.686i
Analytic cond. 12.465912.4659
Root an. cond. 12.465912.4659
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.900 + 0.433i)3-s + (−0.222 + 0.974i)5-s + (0.900 − 0.433i)7-s + (0.623 − 0.781i)9-s + (0.623 + 0.781i)11-s + (0.623 + 0.781i)13-s + (−0.222 − 0.974i)15-s − 17-s + (−0.900 − 0.433i)19-s + (−0.623 + 0.781i)21-s + (0.222 + 0.974i)23-s + (−0.900 − 0.433i)25-s + (−0.222 + 0.974i)27-s + (−0.222 + 0.974i)31-s + (−0.900 − 0.433i)33-s + ⋯
L(s)  = 1  + (−0.900 + 0.433i)3-s + (−0.222 + 0.974i)5-s + (0.900 − 0.433i)7-s + (0.623 − 0.781i)9-s + (0.623 + 0.781i)11-s + (0.623 + 0.781i)13-s + (−0.222 − 0.974i)15-s − 17-s + (−0.900 − 0.433i)19-s + (−0.623 + 0.781i)21-s + (0.222 + 0.974i)23-s + (−0.900 − 0.433i)25-s + (−0.222 + 0.974i)27-s + (−0.222 + 0.974i)31-s + (−0.900 − 0.433i)33-s + ⋯

Functional equation

Λ(s)=(116s/2ΓR(s+1)L(s)=((0.727+0.686i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 116 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.727 + 0.686i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(116s/2ΓR(s+1)L(s)=((0.727+0.686i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 116 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.727 + 0.686i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 116116    =    22292^{2} \cdot 29
Sign: 0.727+0.686i-0.727 + 0.686i
Analytic conductor: 12.465912.4659
Root analytic conductor: 12.465912.4659
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ116(63,)\chi_{116} (63, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 116, (1: ), 0.727+0.686i)(1,\ 116,\ (1:\ ),\ -0.727 + 0.686i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.3700382744+0.9309512216i0.3700382744 + 0.9309512216i
L(12)L(\frac12) \approx 0.3700382744+0.9309512216i0.3700382744 + 0.9309512216i
L(1)L(1) \approx 0.7418966932+0.3609039609i0.7418966932 + 0.3609039609i
L(1)L(1) \approx 0.7418966932+0.3609039609i0.7418966932 + 0.3609039609i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
29 1 1
good3 1+(0.900+0.433i)T 1 + (-0.900 + 0.433i)T
5 1+(0.222+0.974i)T 1 + (-0.222 + 0.974i)T
7 1+(0.9000.433i)T 1 + (0.900 - 0.433i)T
11 1+(0.623+0.781i)T 1 + (0.623 + 0.781i)T
13 1+(0.623+0.781i)T 1 + (0.623 + 0.781i)T
17 1T 1 - T
19 1+(0.9000.433i)T 1 + (-0.900 - 0.433i)T
23 1+(0.222+0.974i)T 1 + (0.222 + 0.974i)T
31 1+(0.222+0.974i)T 1 + (-0.222 + 0.974i)T
37 1+(0.623+0.781i)T 1 + (-0.623 + 0.781i)T
41 1T 1 - T
43 1+(0.2220.974i)T 1 + (-0.222 - 0.974i)T
47 1+(0.623+0.781i)T 1 + (0.623 + 0.781i)T
53 1+(0.222+0.974i)T 1 + (-0.222 + 0.974i)T
59 1T 1 - T
61 1+(0.9000.433i)T 1 + (0.900 - 0.433i)T
67 1+(0.623+0.781i)T 1 + (-0.623 + 0.781i)T
71 1+(0.6230.781i)T 1 + (-0.623 - 0.781i)T
73 1+(0.222+0.974i)T 1 + (0.222 + 0.974i)T
79 1+(0.6230.781i)T 1 + (0.623 - 0.781i)T
83 1+(0.900+0.433i)T 1 + (0.900 + 0.433i)T
89 1+(0.2220.974i)T 1 + (0.222 - 0.974i)T
97 1+(0.900+0.433i)T 1 + (0.900 + 0.433i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−28.42557725885463429179096341464, −27.80806015986273436316260926185, −27.00047639661863025054459155608, −25.06798227099674184757575058805, −24.48411453865095152537222093334, −23.69825931996011584650989854920, −22.553489342757701342313712346565, −21.477956107266114986841466990129, −20.464194851215106279630863634219, −19.17780931777788366158382801959, −18.09370690162167362187760838060, −17.153063569077814418186798308250, −16.302467353683596203040259750006, −15.10505341486239895871098366690, −13.51842914359371765458459814154, −12.566069643734215363437941179245, −11.56303213509923316826855597517, −10.71430556869625067727891474723, −8.81528334635240403417324309182, −8.036574577978951176872075268760, −6.35479402886231889162471954369, −5.33099020864045719247001942250, −4.202510078246022221902240202991, −1.81487301258962716689771888051, −0.48540657349548177258942072483, 1.68532949907392948284878133972, 3.82644700916630757462806847640, 4.766657294874706325755261119307, 6.4438696631553574131692179394, 7.18585860245597687574030948736, 8.967345198660467885533812466486, 10.41617285761140462749461685622, 11.16289680699565123375085437958, 11.97599408588127071195967049795, 13.68422564502889929538093955242, 14.88095297698813281786551597013, 15.661432922315774937483899478924, 17.17440483303410130404001597469, 17.72557048074977710961937979413, 18.86557639296722033663144860108, 20.23231946800144910196048349696, 21.45044519415071394803074774053, 22.19898880395788810549936443229, 23.338822602805868809382400450679, 23.84664692861031135161498832201, 25.48163918126750543435362149264, 26.612027842415981944958586460360, 27.35437704281223397725874832375, 28.21533447540567617889228326195, 29.39630236879131770500742869289

Graph of the ZZ-function along the critical line