L(s) = 1 | + (−0.900 + 0.433i)3-s + (−0.222 + 0.974i)5-s + (0.900 − 0.433i)7-s + (0.623 − 0.781i)9-s + (0.623 + 0.781i)11-s + (0.623 + 0.781i)13-s + (−0.222 − 0.974i)15-s − 17-s + (−0.900 − 0.433i)19-s + (−0.623 + 0.781i)21-s + (0.222 + 0.974i)23-s + (−0.900 − 0.433i)25-s + (−0.222 + 0.974i)27-s + (−0.222 + 0.974i)31-s + (−0.900 − 0.433i)33-s + ⋯ |
L(s) = 1 | + (−0.900 + 0.433i)3-s + (−0.222 + 0.974i)5-s + (0.900 − 0.433i)7-s + (0.623 − 0.781i)9-s + (0.623 + 0.781i)11-s + (0.623 + 0.781i)13-s + (−0.222 − 0.974i)15-s − 17-s + (−0.900 − 0.433i)19-s + (−0.623 + 0.781i)21-s + (0.222 + 0.974i)23-s + (−0.900 − 0.433i)25-s + (−0.222 + 0.974i)27-s + (−0.222 + 0.974i)31-s + (−0.900 − 0.433i)33-s + ⋯ |
Λ(s)=(=(116s/2ΓR(s+1)L(s)(−0.727+0.686i)Λ(1−s)
Λ(s)=(=(116s/2ΓR(s+1)L(s)(−0.727+0.686i)Λ(1−s)
Degree: |
1 |
Conductor: |
116
= 22⋅29
|
Sign: |
−0.727+0.686i
|
Analytic conductor: |
12.4659 |
Root analytic conductor: |
12.4659 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ116(63,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 116, (1: ), −0.727+0.686i)
|
Particular Values
L(21) |
≈ |
0.3700382744+0.9309512216i |
L(21) |
≈ |
0.3700382744+0.9309512216i |
L(1) |
≈ |
0.7418966932+0.3609039609i |
L(1) |
≈ |
0.7418966932+0.3609039609i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 29 | 1 |
good | 3 | 1+(−0.900+0.433i)T |
| 5 | 1+(−0.222+0.974i)T |
| 7 | 1+(0.900−0.433i)T |
| 11 | 1+(0.623+0.781i)T |
| 13 | 1+(0.623+0.781i)T |
| 17 | 1−T |
| 19 | 1+(−0.900−0.433i)T |
| 23 | 1+(0.222+0.974i)T |
| 31 | 1+(−0.222+0.974i)T |
| 37 | 1+(−0.623+0.781i)T |
| 41 | 1−T |
| 43 | 1+(−0.222−0.974i)T |
| 47 | 1+(0.623+0.781i)T |
| 53 | 1+(−0.222+0.974i)T |
| 59 | 1−T |
| 61 | 1+(0.900−0.433i)T |
| 67 | 1+(−0.623+0.781i)T |
| 71 | 1+(−0.623−0.781i)T |
| 73 | 1+(0.222+0.974i)T |
| 79 | 1+(0.623−0.781i)T |
| 83 | 1+(0.900+0.433i)T |
| 89 | 1+(0.222−0.974i)T |
| 97 | 1+(0.900+0.433i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−28.42557725885463429179096341464, −27.80806015986273436316260926185, −27.00047639661863025054459155608, −25.06798227099674184757575058805, −24.48411453865095152537222093334, −23.69825931996011584650989854920, −22.553489342757701342313712346565, −21.477956107266114986841466990129, −20.464194851215106279630863634219, −19.17780931777788366158382801959, −18.09370690162167362187760838060, −17.153063569077814418186798308250, −16.302467353683596203040259750006, −15.10505341486239895871098366690, −13.51842914359371765458459814154, −12.566069643734215363437941179245, −11.56303213509923316826855597517, −10.71430556869625067727891474723, −8.81528334635240403417324309182, −8.036574577978951176872075268760, −6.35479402886231889162471954369, −5.33099020864045719247001942250, −4.202510078246022221902240202991, −1.81487301258962716689771888051, −0.48540657349548177258942072483,
1.68532949907392948284878133972, 3.82644700916630757462806847640, 4.766657294874706325755261119307, 6.4438696631553574131692179394, 7.18585860245597687574030948736, 8.967345198660467885533812466486, 10.41617285761140462749461685622, 11.16289680699565123375085437958, 11.97599408588127071195967049795, 13.68422564502889929538093955242, 14.88095297698813281786551597013, 15.661432922315774937483899478924, 17.17440483303410130404001597469, 17.72557048074977710961937979413, 18.86557639296722033663144860108, 20.23231946800144910196048349696, 21.45044519415071394803074774053, 22.19898880395788810549936443229, 23.338822602805868809382400450679, 23.84664692861031135161498832201, 25.48163918126750543435362149264, 26.612027842415981944958586460360, 27.35437704281223397725874832375, 28.21533447540567617889228326195, 29.39630236879131770500742869289