L(s) = 1 | + (−0.156 + 0.987i)2-s + (−0.951 − 0.309i)4-s + (−0.923 + 0.382i)7-s + (0.453 − 0.891i)8-s + (0.852 + 0.522i)11-s + (0.587 − 0.809i)13-s + (−0.233 − 0.972i)14-s + (0.809 + 0.587i)16-s + (−0.891 − 0.453i)19-s + (−0.649 + 0.760i)22-s + (−0.852 − 0.522i)23-s + (0.707 + 0.707i)26-s + (0.996 − 0.0784i)28-s + (−0.649 + 0.760i)29-s + (0.996 + 0.0784i)31-s + (−0.707 + 0.707i)32-s + ⋯ |
L(s) = 1 | + (−0.156 + 0.987i)2-s + (−0.951 − 0.309i)4-s + (−0.923 + 0.382i)7-s + (0.453 − 0.891i)8-s + (0.852 + 0.522i)11-s + (0.587 − 0.809i)13-s + (−0.233 − 0.972i)14-s + (0.809 + 0.587i)16-s + (−0.891 − 0.453i)19-s + (−0.649 + 0.760i)22-s + (−0.852 − 0.522i)23-s + (0.707 + 0.707i)26-s + (0.996 − 0.0784i)28-s + (−0.649 + 0.760i)29-s + (0.996 + 0.0784i)31-s + (−0.707 + 0.707i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1275 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.914 - 0.403i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1275 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.914 - 0.403i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7242338796 - 0.1528004856i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7242338796 - 0.1528004856i\) |
\(L(1)\) |
\(\approx\) |
\(0.7214116493 + 0.2519070505i\) |
\(L(1)\) |
\(\approx\) |
\(0.7214116493 + 0.2519070505i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (-0.156 + 0.987i)T \) |
| 7 | \( 1 + (-0.923 + 0.382i)T \) |
| 11 | \( 1 + (0.852 + 0.522i)T \) |
| 13 | \( 1 + (0.587 - 0.809i)T \) |
| 19 | \( 1 + (-0.891 - 0.453i)T \) |
| 23 | \( 1 + (-0.852 - 0.522i)T \) |
| 29 | \( 1 + (-0.649 + 0.760i)T \) |
| 31 | \( 1 + (0.996 + 0.0784i)T \) |
| 37 | \( 1 + (0.852 - 0.522i)T \) |
| 41 | \( 1 + (-0.972 - 0.233i)T \) |
| 43 | \( 1 + (-0.707 - 0.707i)T \) |
| 47 | \( 1 + (-0.951 - 0.309i)T \) |
| 53 | \( 1 + (-0.453 - 0.891i)T \) |
| 59 | \( 1 + (0.156 + 0.987i)T \) |
| 61 | \( 1 + (-0.522 + 0.852i)T \) |
| 67 | \( 1 + (-0.309 - 0.951i)T \) |
| 71 | \( 1 + (-0.760 - 0.649i)T \) |
| 73 | \( 1 + (0.972 - 0.233i)T \) |
| 79 | \( 1 + (0.996 - 0.0784i)T \) |
| 83 | \( 1 + (-0.891 - 0.453i)T \) |
| 89 | \( 1 + (-0.587 - 0.809i)T \) |
| 97 | \( 1 + (0.649 - 0.760i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.066282081426468270728867398472, −20.22343154501601689536129677347, −19.51131737500405113203365595957, −18.989462585228930163191299997228, −18.344994698126191159880579432138, −17.1474404580248739327097333988, −16.78873840037796637847179564866, −15.89450628422444827804595157670, −14.70996077292483253643042465059, −13.82038813061225890128330011751, −13.3681414487279165998401532128, −12.48023766769978974083055878042, −11.62760156681784980027892358097, −11.1027287380198123038930620303, −9.97473972658307018047759767509, −9.58894502666391493863663007383, −8.63709646020267018895701261967, −7.90199207222382125011580408620, −6.550085731302085891099282463514, −6.02325125897151710853521316818, −4.55016546898034438067687681645, −3.86023453624702865653672590402, −3.20268019756680508411078484664, −2.00889891944505565587447782277, −1.07851418654060361260461527182,
0.356782833845925009300102919711, 1.79151099764796963583260529205, 3.20928168386562959209694122616, 4.057601393854705656783458621522, 5.01130613731924353498154273623, 6.08742765506418446838770673355, 6.48101088712402419573074225435, 7.377921662716530513875993772737, 8.44461882855025023431280037939, 8.96915882425127331003694280737, 9.89286990742307280180680403437, 10.493997997023017485263168527076, 11.81860590527264579155351620746, 12.73791176040775783726112325826, 13.25512291938481073511836153429, 14.21210007355640620370571151253, 15.09671330447184541229798734536, 15.50397756336146046613723996053, 16.47770020593289936492121252617, 16.94939275600107454643912449311, 17.985760330821715363340319490246, 18.40678742809026264638849302519, 19.503212623460937111088645479408, 19.859070490057748239691303430060, 21.08482529671299879471551254182