L(s) = 1 | + (−0.156 + 0.987i)2-s + (−0.951 − 0.309i)4-s + (−0.923 + 0.382i)7-s + (0.453 − 0.891i)8-s + (0.852 + 0.522i)11-s + (0.587 − 0.809i)13-s + (−0.233 − 0.972i)14-s + (0.809 + 0.587i)16-s + (−0.891 − 0.453i)19-s + (−0.649 + 0.760i)22-s + (−0.852 − 0.522i)23-s + (0.707 + 0.707i)26-s + (0.996 − 0.0784i)28-s + (−0.649 + 0.760i)29-s + (0.996 + 0.0784i)31-s + (−0.707 + 0.707i)32-s + ⋯ |
L(s) = 1 | + (−0.156 + 0.987i)2-s + (−0.951 − 0.309i)4-s + (−0.923 + 0.382i)7-s + (0.453 − 0.891i)8-s + (0.852 + 0.522i)11-s + (0.587 − 0.809i)13-s + (−0.233 − 0.972i)14-s + (0.809 + 0.587i)16-s + (−0.891 − 0.453i)19-s + (−0.649 + 0.760i)22-s + (−0.852 − 0.522i)23-s + (0.707 + 0.707i)26-s + (0.996 − 0.0784i)28-s + (−0.649 + 0.760i)29-s + (0.996 + 0.0784i)31-s + (−0.707 + 0.707i)32-s + ⋯ |
Λ(s)=(=(1275s/2ΓR(s)L(s)(0.914−0.403i)Λ(1−s)
Λ(s)=(=(1275s/2ΓR(s)L(s)(0.914−0.403i)Λ(1−s)
Degree: |
1 |
Conductor: |
1275
= 3⋅52⋅17
|
Sign: |
0.914−0.403i
|
Analytic conductor: |
5.92107 |
Root analytic conductor: |
5.92107 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1275(56,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1275, (0: ), 0.914−0.403i)
|
Particular Values
L(21) |
≈ |
0.7242338796−0.1528004856i |
L(21) |
≈ |
0.7242338796−0.1528004856i |
L(1) |
≈ |
0.7214116493+0.2519070505i |
L(1) |
≈ |
0.7214116493+0.2519070505i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 17 | 1 |
good | 2 | 1+(−0.156+0.987i)T |
| 7 | 1+(−0.923+0.382i)T |
| 11 | 1+(0.852+0.522i)T |
| 13 | 1+(0.587−0.809i)T |
| 19 | 1+(−0.891−0.453i)T |
| 23 | 1+(−0.852−0.522i)T |
| 29 | 1+(−0.649+0.760i)T |
| 31 | 1+(0.996+0.0784i)T |
| 37 | 1+(0.852−0.522i)T |
| 41 | 1+(−0.972−0.233i)T |
| 43 | 1+(−0.707−0.707i)T |
| 47 | 1+(−0.951−0.309i)T |
| 53 | 1+(−0.453−0.891i)T |
| 59 | 1+(0.156+0.987i)T |
| 61 | 1+(−0.522+0.852i)T |
| 67 | 1+(−0.309−0.951i)T |
| 71 | 1+(−0.760−0.649i)T |
| 73 | 1+(0.972−0.233i)T |
| 79 | 1+(0.996−0.0784i)T |
| 83 | 1+(−0.891−0.453i)T |
| 89 | 1+(−0.587−0.809i)T |
| 97 | 1+(0.649−0.760i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.066282081426468270728867398472, −20.22343154501601689536129677347, −19.51131737500405113203365595957, −18.989462585228930163191299997228, −18.344994698126191159880579432138, −17.1474404580248739327097333988, −16.78873840037796637847179564866, −15.89450628422444827804595157670, −14.70996077292483253643042465059, −13.82038813061225890128330011751, −13.3681414487279165998401532128, −12.48023766769978974083055878042, −11.62760156681784980027892358097, −11.1027287380198123038930620303, −9.97473972658307018047759767509, −9.58894502666391493863663007383, −8.63709646020267018895701261967, −7.90199207222382125011580408620, −6.550085731302085891099282463514, −6.02325125897151710853521316818, −4.55016546898034438067687681645, −3.86023453624702865653672590402, −3.20268019756680508411078484664, −2.00889891944505565587447782277, −1.07851418654060361260461527182,
0.356782833845925009300102919711, 1.79151099764796963583260529205, 3.20928168386562959209694122616, 4.057601393854705656783458621522, 5.01130613731924353498154273623, 6.08742765506418446838770673355, 6.48101088712402419573074225435, 7.377921662716530513875993772737, 8.44461882855025023431280037939, 8.96915882425127331003694280737, 9.89286990742307280180680403437, 10.493997997023017485263168527076, 11.81860590527264579155351620746, 12.73791176040775783726112325826, 13.25512291938481073511836153429, 14.21210007355640620370571151253, 15.09671330447184541229798734536, 15.50397756336146046613723996053, 16.47770020593289936492121252617, 16.94939275600107454643912449311, 17.985760330821715363340319490246, 18.40678742809026264638849302519, 19.503212623460937111088645479408, 19.859070490057748239691303430060, 21.08482529671299879471551254182