Properties

Label 1-1275-1275.56-r0-0-0
Degree 11
Conductor 12751275
Sign 0.9140.403i0.914 - 0.403i
Analytic cond. 5.921075.92107
Root an. cond. 5.921075.92107
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.156 + 0.987i)2-s + (−0.951 − 0.309i)4-s + (−0.923 + 0.382i)7-s + (0.453 − 0.891i)8-s + (0.852 + 0.522i)11-s + (0.587 − 0.809i)13-s + (−0.233 − 0.972i)14-s + (0.809 + 0.587i)16-s + (−0.891 − 0.453i)19-s + (−0.649 + 0.760i)22-s + (−0.852 − 0.522i)23-s + (0.707 + 0.707i)26-s + (0.996 − 0.0784i)28-s + (−0.649 + 0.760i)29-s + (0.996 + 0.0784i)31-s + (−0.707 + 0.707i)32-s + ⋯
L(s)  = 1  + (−0.156 + 0.987i)2-s + (−0.951 − 0.309i)4-s + (−0.923 + 0.382i)7-s + (0.453 − 0.891i)8-s + (0.852 + 0.522i)11-s + (0.587 − 0.809i)13-s + (−0.233 − 0.972i)14-s + (0.809 + 0.587i)16-s + (−0.891 − 0.453i)19-s + (−0.649 + 0.760i)22-s + (−0.852 − 0.522i)23-s + (0.707 + 0.707i)26-s + (0.996 − 0.0784i)28-s + (−0.649 + 0.760i)29-s + (0.996 + 0.0784i)31-s + (−0.707 + 0.707i)32-s + ⋯

Functional equation

Λ(s)=(1275s/2ΓR(s)L(s)=((0.9140.403i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1275 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.914 - 0.403i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1275s/2ΓR(s)L(s)=((0.9140.403i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1275 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.914 - 0.403i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 12751275    =    352173 \cdot 5^{2} \cdot 17
Sign: 0.9140.403i0.914 - 0.403i
Analytic conductor: 5.921075.92107
Root analytic conductor: 5.921075.92107
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1275(56,)\chi_{1275} (56, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 1275, (0: ), 0.9140.403i)(1,\ 1275,\ (0:\ ),\ 0.914 - 0.403i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.72423387960.1528004856i0.7242338796 - 0.1528004856i
L(12)L(\frac12) \approx 0.72423387960.1528004856i0.7242338796 - 0.1528004856i
L(1)L(1) \approx 0.7214116493+0.2519070505i0.7214116493 + 0.2519070505i
L(1)L(1) \approx 0.7214116493+0.2519070505i0.7214116493 + 0.2519070505i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
5 1 1
17 1 1
good2 1+(0.156+0.987i)T 1 + (-0.156 + 0.987i)T
7 1+(0.923+0.382i)T 1 + (-0.923 + 0.382i)T
11 1+(0.852+0.522i)T 1 + (0.852 + 0.522i)T
13 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
19 1+(0.8910.453i)T 1 + (-0.891 - 0.453i)T
23 1+(0.8520.522i)T 1 + (-0.852 - 0.522i)T
29 1+(0.649+0.760i)T 1 + (-0.649 + 0.760i)T
31 1+(0.996+0.0784i)T 1 + (0.996 + 0.0784i)T
37 1+(0.8520.522i)T 1 + (0.852 - 0.522i)T
41 1+(0.9720.233i)T 1 + (-0.972 - 0.233i)T
43 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
47 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
53 1+(0.4530.891i)T 1 + (-0.453 - 0.891i)T
59 1+(0.156+0.987i)T 1 + (0.156 + 0.987i)T
61 1+(0.522+0.852i)T 1 + (-0.522 + 0.852i)T
67 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
71 1+(0.7600.649i)T 1 + (-0.760 - 0.649i)T
73 1+(0.9720.233i)T 1 + (0.972 - 0.233i)T
79 1+(0.9960.0784i)T 1 + (0.996 - 0.0784i)T
83 1+(0.8910.453i)T 1 + (-0.891 - 0.453i)T
89 1+(0.5870.809i)T 1 + (-0.587 - 0.809i)T
97 1+(0.6490.760i)T 1 + (0.649 - 0.760i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−21.066282081426468270728867398472, −20.22343154501601689536129677347, −19.51131737500405113203365595957, −18.989462585228930163191299997228, −18.344994698126191159880579432138, −17.1474404580248739327097333988, −16.78873840037796637847179564866, −15.89450628422444827804595157670, −14.70996077292483253643042465059, −13.82038813061225890128330011751, −13.3681414487279165998401532128, −12.48023766769978974083055878042, −11.62760156681784980027892358097, −11.1027287380198123038930620303, −9.97473972658307018047759767509, −9.58894502666391493863663007383, −8.63709646020267018895701261967, −7.90199207222382125011580408620, −6.550085731302085891099282463514, −6.02325125897151710853521316818, −4.55016546898034438067687681645, −3.86023453624702865653672590402, −3.20268019756680508411078484664, −2.00889891944505565587447782277, −1.07851418654060361260461527182, 0.356782833845925009300102919711, 1.79151099764796963583260529205, 3.20928168386562959209694122616, 4.057601393854705656783458621522, 5.01130613731924353498154273623, 6.08742765506418446838770673355, 6.48101088712402419573074225435, 7.377921662716530513875993772737, 8.44461882855025023431280037939, 8.96915882425127331003694280737, 9.89286990742307280180680403437, 10.493997997023017485263168527076, 11.81860590527264579155351620746, 12.73791176040775783726112325826, 13.25512291938481073511836153429, 14.21210007355640620370571151253, 15.09671330447184541229798734536, 15.50397756336146046613723996053, 16.47770020593289936492121252617, 16.94939275600107454643912449311, 17.985760330821715363340319490246, 18.40678742809026264638849302519, 19.503212623460937111088645479408, 19.859070490057748239691303430060, 21.08482529671299879471551254182

Graph of the ZZ-function along the critical line