L(s) = 1 | + (0.891 − 0.453i)2-s + (−0.852 − 0.522i)3-s + (0.587 − 0.809i)4-s + (0.649 + 0.760i)5-s + (−0.996 − 0.0784i)6-s + (0.156 − 0.987i)8-s + (0.453 + 0.891i)9-s + (0.923 + 0.382i)10-s + (−0.923 + 0.382i)12-s + (−0.951 − 0.309i)13-s + (−0.156 − 0.987i)15-s + (−0.309 − 0.951i)16-s + (0.809 + 0.587i)18-s + (0.987 + 0.156i)19-s + (0.996 − 0.0784i)20-s + ⋯ |
L(s) = 1 | + (0.891 − 0.453i)2-s + (−0.852 − 0.522i)3-s + (0.587 − 0.809i)4-s + (0.649 + 0.760i)5-s + (−0.996 − 0.0784i)6-s + (0.156 − 0.987i)8-s + (0.453 + 0.891i)9-s + (0.923 + 0.382i)10-s + (−0.923 + 0.382i)12-s + (−0.951 − 0.309i)13-s + (−0.156 − 0.987i)15-s + (−0.309 − 0.951i)16-s + (0.809 + 0.587i)18-s + (0.987 + 0.156i)19-s + (0.996 − 0.0784i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1309 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.999 + 0.00154i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1309 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.999 + 0.00154i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.887841664 + 0.002234898438i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.887841664 + 0.002234898438i\) |
\(L(1)\) |
\(\approx\) |
\(1.460250376 - 0.3871896877i\) |
\(L(1)\) |
\(\approx\) |
\(1.460250376 - 0.3871896877i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (0.891 - 0.453i)T \) |
| 3 | \( 1 + (-0.852 - 0.522i)T \) |
| 5 | \( 1 + (0.649 + 0.760i)T \) |
| 13 | \( 1 + (-0.951 - 0.309i)T \) |
| 19 | \( 1 + (0.987 + 0.156i)T \) |
| 23 | \( 1 + (-0.382 + 0.923i)T \) |
| 29 | \( 1 + (0.972 + 0.233i)T \) |
| 31 | \( 1 + (-0.996 + 0.0784i)T \) |
| 37 | \( 1 + (-0.233 + 0.972i)T \) |
| 41 | \( 1 + (0.972 - 0.233i)T \) |
| 43 | \( 1 + (0.707 - 0.707i)T \) |
| 47 | \( 1 + (-0.587 - 0.809i)T \) |
| 53 | \( 1 + (-0.891 + 0.453i)T \) |
| 59 | \( 1 + (0.987 - 0.156i)T \) |
| 61 | \( 1 + (-0.0784 + 0.996i)T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + (0.760 - 0.649i)T \) |
| 73 | \( 1 + (0.972 + 0.233i)T \) |
| 79 | \( 1 + (0.760 + 0.649i)T \) |
| 83 | \( 1 + (-0.453 + 0.891i)T \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 + (0.0784 + 0.996i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.00006415149873258207381852255, −20.41476443027731305150547408340, −19.49421702910443281033167134142, −17.88966609681813229022999313885, −17.68138083398270493465561109948, −16.62644576615388328775608470992, −16.31756251860657953499557779680, −15.59996761873811892373648128212, −14.48882601569246697408164490647, −14.0622225877745029624703802619, −12.794407441838227995440759116648, −12.50165287558128333842507681901, −11.662457456829806840484166417945, −10.83407641197574149066329518453, −9.79752830696899823963524242508, −9.1516364847537526616842045089, −7.9890368140974542276136483650, −7.003658995531973700765800085078, −6.16576232324609259440222110496, −5.48033677431496918279342943790, −4.755528770198324544049972706078, −4.21989178943597706369579542322, −2.9698180748972625987419516868, −1.86172877638101876883791600281, −0.50714951989162204535692280700,
0.924003984680444950494707345732, 1.89449227115671508578339425567, 2.6882759882245077688882727477, 3.67483396383603906883294154148, 4.97896261967683512499105753376, 5.472796251799318741463955975488, 6.26964969922625811368822921366, 7.07218969657007705766987032009, 7.667498126954677570902335476503, 9.45721474316008406084457867359, 10.15252332159292411716843326450, 10.783113307554647244432001729635, 11.6293843369785840405920480137, 12.21317264812006526126562955469, 13.0418364531453547872520690977, 13.7984460476306370621417866500, 14.3498820862964172982054652409, 15.31297387918061892147696102986, 16.10054623570205977611409361493, 17.07226874678997769810257313935, 17.882298250607341792950698829013, 18.45066427116622450707772778848, 19.35020453198838120863915182151, 19.93024368196295048367174215717, 21.083943556352606891970219702364