L(s) = 1 | + (0.891 − 0.453i)2-s + (−0.852 − 0.522i)3-s + (0.587 − 0.809i)4-s + (0.649 + 0.760i)5-s + (−0.996 − 0.0784i)6-s + (0.156 − 0.987i)8-s + (0.453 + 0.891i)9-s + (0.923 + 0.382i)10-s + (−0.923 + 0.382i)12-s + (−0.951 − 0.309i)13-s + (−0.156 − 0.987i)15-s + (−0.309 − 0.951i)16-s + (0.809 + 0.587i)18-s + (0.987 + 0.156i)19-s + (0.996 − 0.0784i)20-s + ⋯ |
L(s) = 1 | + (0.891 − 0.453i)2-s + (−0.852 − 0.522i)3-s + (0.587 − 0.809i)4-s + (0.649 + 0.760i)5-s + (−0.996 − 0.0784i)6-s + (0.156 − 0.987i)8-s + (0.453 + 0.891i)9-s + (0.923 + 0.382i)10-s + (−0.923 + 0.382i)12-s + (−0.951 − 0.309i)13-s + (−0.156 − 0.987i)15-s + (−0.309 − 0.951i)16-s + (0.809 + 0.587i)18-s + (0.987 + 0.156i)19-s + (0.996 − 0.0784i)20-s + ⋯ |
Λ(s)=(=(1309s/2ΓR(s+1)L(s)(0.999+0.00154i)Λ(1−s)
Λ(s)=(=(1309s/2ΓR(s+1)L(s)(0.999+0.00154i)Λ(1−s)
Degree: |
1 |
Conductor: |
1309
= 7⋅11⋅17
|
Sign: |
0.999+0.00154i
|
Analytic conductor: |
140.671 |
Root analytic conductor: |
140.671 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1309(41,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1309, (1: ), 0.999+0.00154i)
|
Particular Values
L(21) |
≈ |
2.887841664+0.002234898438i |
L(21) |
≈ |
2.887841664+0.002234898438i |
L(1) |
≈ |
1.460250376−0.3871896877i |
L(1) |
≈ |
1.460250376−0.3871896877i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 11 | 1 |
| 17 | 1 |
good | 2 | 1+(0.891−0.453i)T |
| 3 | 1+(−0.852−0.522i)T |
| 5 | 1+(0.649+0.760i)T |
| 13 | 1+(−0.951−0.309i)T |
| 19 | 1+(0.987+0.156i)T |
| 23 | 1+(−0.382+0.923i)T |
| 29 | 1+(0.972+0.233i)T |
| 31 | 1+(−0.996+0.0784i)T |
| 37 | 1+(−0.233+0.972i)T |
| 41 | 1+(0.972−0.233i)T |
| 43 | 1+(0.707−0.707i)T |
| 47 | 1+(−0.587−0.809i)T |
| 53 | 1+(−0.891+0.453i)T |
| 59 | 1+(0.987−0.156i)T |
| 61 | 1+(−0.0784+0.996i)T |
| 67 | 1−T |
| 71 | 1+(0.760−0.649i)T |
| 73 | 1+(0.972+0.233i)T |
| 79 | 1+(0.760+0.649i)T |
| 83 | 1+(−0.453+0.891i)T |
| 89 | 1−iT |
| 97 | 1+(0.0784+0.996i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.00006415149873258207381852255, −20.41476443027731305150547408340, −19.49421702910443281033167134142, −17.88966609681813229022999313885, −17.68138083398270493465561109948, −16.62644576615388328775608470992, −16.31756251860657953499557779680, −15.59996761873811892373648128212, −14.48882601569246697408164490647, −14.0622225877745029624703802619, −12.794407441838227995440759116648, −12.50165287558128333842507681901, −11.662457456829806840484166417945, −10.83407641197574149066329518453, −9.79752830696899823963524242508, −9.1516364847537526616842045089, −7.9890368140974542276136483650, −7.003658995531973700765800085078, −6.16576232324609259440222110496, −5.48033677431496918279342943790, −4.755528770198324544049972706078, −4.21989178943597706369579542322, −2.9698180748972625987419516868, −1.86172877638101876883791600281, −0.50714951989162204535692280700,
0.924003984680444950494707345732, 1.89449227115671508578339425567, 2.6882759882245077688882727477, 3.67483396383603906883294154148, 4.97896261967683512499105753376, 5.472796251799318741463955975488, 6.26964969922625811368822921366, 7.07218969657007705766987032009, 7.667498126954677570902335476503, 9.45721474316008406084457867359, 10.15252332159292411716843326450, 10.783113307554647244432001729635, 11.6293843369785840405920480137, 12.21317264812006526126562955469, 13.0418364531453547872520690977, 13.7984460476306370621417866500, 14.3498820862964172982054652409, 15.31297387918061892147696102986, 16.10054623570205977611409361493, 17.07226874678997769810257313935, 17.882298250607341792950698829013, 18.45066427116622450707772778848, 19.35020453198838120863915182151, 19.93024368196295048367174215717, 21.083943556352606891970219702364