L(s) = 1 | + (0.993 + 0.114i)3-s + (−0.152 − 0.988i)5-s + (−0.859 − 0.511i)7-s + (0.973 + 0.227i)9-s + (0.999 + 0.0383i)11-s + (0.746 − 0.665i)13-s + (−0.0383 − 0.999i)15-s + (0.817 + 0.575i)17-s + (0.373 + 0.927i)19-s + (−0.795 − 0.606i)21-s + (−0.771 + 0.636i)23-s + (−0.953 + 0.301i)25-s + (0.941 + 0.338i)27-s + (0.693 + 0.720i)29-s + (−0.190 + 0.981i)31-s + ⋯ |
L(s) = 1 | + (0.993 + 0.114i)3-s + (−0.152 − 0.988i)5-s + (−0.859 − 0.511i)7-s + (0.973 + 0.227i)9-s + (0.999 + 0.0383i)11-s + (0.746 − 0.665i)13-s + (−0.0383 − 0.999i)15-s + (0.817 + 0.575i)17-s + (0.373 + 0.927i)19-s + (−0.795 − 0.606i)21-s + (−0.771 + 0.636i)23-s + (−0.953 + 0.301i)25-s + (0.941 + 0.338i)27-s + (0.693 + 0.720i)29-s + (−0.190 + 0.981i)31-s + ⋯ |
Λ(s)=(=(1328s/2ΓR(s+1)L(s)(0.903+0.429i)Λ(1−s)
Λ(s)=(=(1328s/2ΓR(s+1)L(s)(0.903+0.429i)Λ(1−s)
Degree: |
1 |
Conductor: |
1328
= 24⋅83
|
Sign: |
0.903+0.429i
|
Analytic conductor: |
142.713 |
Root analytic conductor: |
142.713 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1328(147,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1328, (1: ), 0.903+0.429i)
|
Particular Values
L(21) |
≈ |
3.163473631+0.7133252854i |
L(21) |
≈ |
3.163473631+0.7133252854i |
L(1) |
≈ |
1.546595379−0.05180730386i |
L(1) |
≈ |
1.546595379−0.05180730386i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 83 | 1 |
good | 3 | 1+(0.993+0.114i)T |
| 5 | 1+(−0.152−0.988i)T |
| 7 | 1+(−0.859−0.511i)T |
| 11 | 1+(0.999+0.0383i)T |
| 13 | 1+(0.746−0.665i)T |
| 17 | 1+(0.817+0.575i)T |
| 19 | 1+(0.373+0.927i)T |
| 23 | 1+(−0.771+0.636i)T |
| 29 | 1+(0.693+0.720i)T |
| 31 | 1+(−0.190+0.981i)T |
| 37 | 1+(0.227+0.973i)T |
| 41 | 1+(−0.896+0.443i)T |
| 43 | 1+(−0.941+0.338i)T |
| 47 | 1+(0.409+0.912i)T |
| 53 | 1+(0.912+0.409i)T |
| 59 | 1+(−0.0765−0.997i)T |
| 61 | 1+(0.878+0.477i)T |
| 67 | 1+(0.964+0.264i)T |
| 71 | 1+(−0.859+0.511i)T |
| 73 | 1+(−0.953−0.301i)T |
| 79 | 1+(−0.606−0.795i)T |
| 89 | 1+(0.543−0.839i)T |
| 97 | 1+(−0.543−0.839i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−20.553850488841937043849371454049, −19.76814540710566600401935809475, −19.165731569154361864767972710901, −18.58468122556071746758907332444, −18.02992205588142741616722641281, −16.70777843376774097667423865961, −15.92216217590194414455062670029, −15.27495470083411675410774173079, −14.50580096036697694900538424757, −13.84794568457385826098671022082, −13.26798879208616363472351979616, −12.02986951762867748275403808574, −11.62075448275530640309552234465, −10.33477144869158410392623003929, −9.66109586064161685866247795775, −8.98955510023455760373734785939, −8.16979126104514089102884380020, −7.031346484753230382198414457696, −6.68735314632262447133611333285, −5.72704457697889883531051502562, −4.13536927786046133573878439346, −3.595951176405859852800468518437, −2.72870654009634086870205422279, −1.99831863667797626602869919179, −0.5882199668023975899048215956,
1.10929049518170415697772878473, 1.515914273040376157713500544484, 3.24672371847110191763905580012, 3.59679989524493240163889370198, 4.45969866539653894906878551810, 5.62727591849664850443104512776, 6.548363010037617288377440998398, 7.58702583683224944938996102722, 8.33099306627959851538933682831, 8.92531745847680150569722898403, 9.938303383476201836268561288403, 10.21712145479988638665546845704, 11.72327185106744446078957709671, 12.50335734271932156958036471957, 13.121242264388622622497653255027, 13.87639065003524484959033716755, 14.548316762164742510109894216770, 15.58058056301677200279335832994, 16.19969474757019952890736613026, 16.74602992450724586869876357657, 17.7287150805511826925351524525, 18.79915623940487248543260424953, 19.464424334983574715303186202004, 20.2453012654452804621375954046, 20.35676103623599446384591598151