Properties

Label 1-1328-1328.147-r1-0-0
Degree 11
Conductor 13281328
Sign 0.903+0.429i0.903 + 0.429i
Analytic cond. 142.713142.713
Root an. cond. 142.713142.713
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.993 + 0.114i)3-s + (−0.152 − 0.988i)5-s + (−0.859 − 0.511i)7-s + (0.973 + 0.227i)9-s + (0.999 + 0.0383i)11-s + (0.746 − 0.665i)13-s + (−0.0383 − 0.999i)15-s + (0.817 + 0.575i)17-s + (0.373 + 0.927i)19-s + (−0.795 − 0.606i)21-s + (−0.771 + 0.636i)23-s + (−0.953 + 0.301i)25-s + (0.941 + 0.338i)27-s + (0.693 + 0.720i)29-s + (−0.190 + 0.981i)31-s + ⋯
L(s)  = 1  + (0.993 + 0.114i)3-s + (−0.152 − 0.988i)5-s + (−0.859 − 0.511i)7-s + (0.973 + 0.227i)9-s + (0.999 + 0.0383i)11-s + (0.746 − 0.665i)13-s + (−0.0383 − 0.999i)15-s + (0.817 + 0.575i)17-s + (0.373 + 0.927i)19-s + (−0.795 − 0.606i)21-s + (−0.771 + 0.636i)23-s + (−0.953 + 0.301i)25-s + (0.941 + 0.338i)27-s + (0.693 + 0.720i)29-s + (−0.190 + 0.981i)31-s + ⋯

Functional equation

Λ(s)=(1328s/2ΓR(s+1)L(s)=((0.903+0.429i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1328 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.903 + 0.429i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1328s/2ΓR(s+1)L(s)=((0.903+0.429i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1328 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.903 + 0.429i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 13281328    =    24832^{4} \cdot 83
Sign: 0.903+0.429i0.903 + 0.429i
Analytic conductor: 142.713142.713
Root analytic conductor: 142.713142.713
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1328(147,)\chi_{1328} (147, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 1328, (1: ), 0.903+0.429i)(1,\ 1328,\ (1:\ ),\ 0.903 + 0.429i)

Particular Values

L(12)L(\frac{1}{2}) \approx 3.163473631+0.7133252854i3.163473631 + 0.7133252854i
L(12)L(\frac12) \approx 3.163473631+0.7133252854i3.163473631 + 0.7133252854i
L(1)L(1) \approx 1.5465953790.05180730386i1.546595379 - 0.05180730386i
L(1)L(1) \approx 1.5465953790.05180730386i1.546595379 - 0.05180730386i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
83 1 1
good3 1+(0.993+0.114i)T 1 + (0.993 + 0.114i)T
5 1+(0.1520.988i)T 1 + (-0.152 - 0.988i)T
7 1+(0.8590.511i)T 1 + (-0.859 - 0.511i)T
11 1+(0.999+0.0383i)T 1 + (0.999 + 0.0383i)T
13 1+(0.7460.665i)T 1 + (0.746 - 0.665i)T
17 1+(0.817+0.575i)T 1 + (0.817 + 0.575i)T
19 1+(0.373+0.927i)T 1 + (0.373 + 0.927i)T
23 1+(0.771+0.636i)T 1 + (-0.771 + 0.636i)T
29 1+(0.693+0.720i)T 1 + (0.693 + 0.720i)T
31 1+(0.190+0.981i)T 1 + (-0.190 + 0.981i)T
37 1+(0.227+0.973i)T 1 + (0.227 + 0.973i)T
41 1+(0.896+0.443i)T 1 + (-0.896 + 0.443i)T
43 1+(0.941+0.338i)T 1 + (-0.941 + 0.338i)T
47 1+(0.409+0.912i)T 1 + (0.409 + 0.912i)T
53 1+(0.912+0.409i)T 1 + (0.912 + 0.409i)T
59 1+(0.07650.997i)T 1 + (-0.0765 - 0.997i)T
61 1+(0.878+0.477i)T 1 + (0.878 + 0.477i)T
67 1+(0.964+0.264i)T 1 + (0.964 + 0.264i)T
71 1+(0.859+0.511i)T 1 + (-0.859 + 0.511i)T
73 1+(0.9530.301i)T 1 + (-0.953 - 0.301i)T
79 1+(0.6060.795i)T 1 + (-0.606 - 0.795i)T
89 1+(0.5430.839i)T 1 + (0.543 - 0.839i)T
97 1+(0.5430.839i)T 1 + (-0.543 - 0.839i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−20.553850488841937043849371454049, −19.76814540710566600401935809475, −19.165731569154361864767972710901, −18.58468122556071746758907332444, −18.02992205588142741616722641281, −16.70777843376774097667423865961, −15.92216217590194414455062670029, −15.27495470083411675410774173079, −14.50580096036697694900538424757, −13.84794568457385826098671022082, −13.26798879208616363472351979616, −12.02986951762867748275403808574, −11.62075448275530640309552234465, −10.33477144869158410392623003929, −9.66109586064161685866247795775, −8.98955510023455760373734785939, −8.16979126104514089102884380020, −7.031346484753230382198414457696, −6.68735314632262447133611333285, −5.72704457697889883531051502562, −4.13536927786046133573878439346, −3.595951176405859852800468518437, −2.72870654009634086870205422279, −1.99831863667797626602869919179, −0.5882199668023975899048215956, 1.10929049518170415697772878473, 1.515914273040376157713500544484, 3.24672371847110191763905580012, 3.59679989524493240163889370198, 4.45969866539653894906878551810, 5.62727591849664850443104512776, 6.548363010037617288377440998398, 7.58702583683224944938996102722, 8.33099306627959851538933682831, 8.92531745847680150569722898403, 9.938303383476201836268561288403, 10.21712145479988638665546845704, 11.72327185106744446078957709671, 12.50335734271932156958036471957, 13.121242264388622622497653255027, 13.87639065003524484959033716755, 14.548316762164742510109894216770, 15.58058056301677200279335832994, 16.19969474757019952890736613026, 16.74602992450724586869876357657, 17.7287150805511826925351524525, 18.79915623940487248543260424953, 19.464424334983574715303186202004, 20.2453012654452804621375954046, 20.35676103623599446384591598151

Graph of the ZZ-function along the critical line