L(s) = 1 | + (0.939 − 0.342i)2-s + (0.766 − 0.642i)4-s + (−0.766 − 0.642i)7-s + (0.5 − 0.866i)8-s + (0.173 − 0.984i)11-s + (0.939 + 0.342i)13-s + (−0.939 − 0.342i)14-s + (0.173 − 0.984i)16-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s + (−0.173 − 0.984i)22-s + (−0.766 + 0.642i)23-s + 26-s − 28-s + (−0.939 + 0.342i)29-s + ⋯ |
L(s) = 1 | + (0.939 − 0.342i)2-s + (0.766 − 0.642i)4-s + (−0.766 − 0.642i)7-s + (0.5 − 0.866i)8-s + (0.173 − 0.984i)11-s + (0.939 + 0.342i)13-s + (−0.939 − 0.342i)14-s + (0.173 − 0.984i)16-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s + (−0.173 − 0.984i)22-s + (−0.766 + 0.642i)23-s + 26-s − 28-s + (−0.939 + 0.342i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.549 - 0.835i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.549 - 0.835i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.555564503 - 0.8387529217i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.555564503 - 0.8387529217i\) |
\(L(1)\) |
\(\approx\) |
\(1.563687257 - 0.5293386532i\) |
\(L(1)\) |
\(\approx\) |
\(1.563687257 - 0.5293386532i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (0.939 - 0.342i)T \) |
| 7 | \( 1 + (-0.766 - 0.642i)T \) |
| 11 | \( 1 + (0.173 - 0.984i)T \) |
| 13 | \( 1 + (0.939 + 0.342i)T \) |
| 17 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.766 + 0.642i)T \) |
| 29 | \( 1 + (-0.939 + 0.342i)T \) |
| 31 | \( 1 + (0.766 - 0.642i)T \) |
| 37 | \( 1 + (0.5 + 0.866i)T \) |
| 41 | \( 1 + (-0.939 - 0.342i)T \) |
| 43 | \( 1 + (-0.173 + 0.984i)T \) |
| 47 | \( 1 + (-0.766 - 0.642i)T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (0.173 + 0.984i)T \) |
| 61 | \( 1 + (0.766 + 0.642i)T \) |
| 67 | \( 1 + (0.939 + 0.342i)T \) |
| 71 | \( 1 + (-0.5 - 0.866i)T \) |
| 73 | \( 1 + (0.5 - 0.866i)T \) |
| 79 | \( 1 + (-0.939 + 0.342i)T \) |
| 83 | \( 1 + (0.939 - 0.342i)T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.173 + 0.984i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.73200223262989358639028264975, −27.979668232328718570897456765141, −26.31622005799306622878208679487, −25.48513035706342775462742944670, −24.86248947435391080825106243449, −23.518210381866351559916553560835, −22.753870354770786213227542538613, −21.96945667269252120414955809858, −20.79910394782676901171962608101, −19.95742195813367798338389886869, −18.578059012259897477596277779053, −17.36488342917830459119463159652, −16.07862692356473584877421020358, −15.46202990851435556245711464447, −14.3385857902149379434817322851, −13.14065938445111976794876623390, −12.382292244024776157757942800574, −11.28870222937521274113979922995, −9.80587244217098387929002896954, −8.41576677696786467599182719591, −7.02391011596366889460735246570, −6.079549191245975894344905203314, −4.85968535195818489237848362097, −3.511815514576040201246034653582, −2.26744732590397788980735884318,
1.467492042156706085352789117302, 3.33445443130058517532795827876, 4.02512549162021800493950069307, 5.81077433119848775058726942274, 6.507969081622171481385815747, 8.09417103166226051415016692144, 9.784087169209100010629372876291, 10.766791948319756148859230982055, 11.812936784567303671556120392186, 13.08865645058518956846691946774, 13.72791944231938541613570952264, 14.85858352820393595785354322554, 16.13266790160441027253796482430, 16.79685524419235199297392247683, 18.71600384708229460697212897688, 19.42243717235224041141323955758, 20.53286338813345872740134701182, 21.44654881009656617045344830952, 22.410403579622514660180181181, 23.41579275689285416333592865571, 24.04179139178740717991366725356, 25.37935874707098400596475608246, 26.20550552689218542367810393621, 27.6403342182807043731225192277, 28.6468977633722051699149577665