L(s) = 1 | + (−0.951 + 0.309i)2-s + (−0.809 − 0.587i)3-s + (0.809 − 0.587i)4-s + (−0.951 − 0.309i)5-s + (0.951 + 0.309i)6-s + (0.587 + 0.809i)7-s + (−0.587 + 0.809i)8-s + (0.309 + 0.951i)9-s + 10-s − 12-s + (−0.809 − 0.587i)14-s + (0.587 + 0.809i)15-s + (0.309 − 0.951i)16-s + (0.309 − 0.951i)17-s + (−0.587 − 0.809i)18-s + (0.587 − 0.809i)19-s + ⋯ |
L(s) = 1 | + (−0.951 + 0.309i)2-s + (−0.809 − 0.587i)3-s + (0.809 − 0.587i)4-s + (−0.951 − 0.309i)5-s + (0.951 + 0.309i)6-s + (0.587 + 0.809i)7-s + (−0.587 + 0.809i)8-s + (0.309 + 0.951i)9-s + 10-s − 12-s + (−0.809 − 0.587i)14-s + (0.587 + 0.809i)15-s + (0.309 − 0.951i)16-s + (0.309 − 0.951i)17-s + (−0.587 − 0.809i)18-s + (0.587 − 0.809i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.753 - 0.657i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.753 - 0.657i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4400114666 - 0.1651219269i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4400114666 - 0.1651219269i\) |
\(L(1)\) |
\(\approx\) |
\(0.5178731278 - 0.06627431118i\) |
\(L(1)\) |
\(\approx\) |
\(0.5178731278 - 0.06627431118i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.951 + 0.309i)T \) |
| 3 | \( 1 + (-0.809 - 0.587i)T \) |
| 5 | \( 1 + (-0.951 - 0.309i)T \) |
| 7 | \( 1 + (0.587 + 0.809i)T \) |
| 17 | \( 1 + (0.309 - 0.951i)T \) |
| 19 | \( 1 + (0.587 - 0.809i)T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 + (0.809 - 0.587i)T \) |
| 31 | \( 1 + (0.951 - 0.309i)T \) |
| 37 | \( 1 + (-0.587 - 0.809i)T \) |
| 41 | \( 1 + (0.587 - 0.809i)T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (0.587 - 0.809i)T \) |
| 53 | \( 1 + (0.309 + 0.951i)T \) |
| 59 | \( 1 + (-0.587 - 0.809i)T \) |
| 61 | \( 1 + (-0.309 + 0.951i)T \) |
| 67 | \( 1 - iT \) |
| 71 | \( 1 + (-0.951 - 0.309i)T \) |
| 73 | \( 1 + (0.587 + 0.809i)T \) |
| 79 | \( 1 + (-0.309 - 0.951i)T \) |
| 83 | \( 1 + (0.951 + 0.309i)T \) |
| 89 | \( 1 + iT \) |
| 97 | \( 1 + (0.951 - 0.309i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.109254368000968663576745246678, −27.44689355237233465092309609118, −26.757422718505122861169219260516, −26.00361124346935459489408090055, −24.31477898365766705241669708398, −23.506374821256843344932592122904, −22.4268225845765364155799893272, −21.259038202264872807817001289417, −20.38362060682394348695489067234, −19.407954487738171461153267631746, −18.23003058308851761424474151489, −17.37276274711905515193031681949, −16.410425477191490712892947057667, −15.642169792581980216701543307884, −14.44031487560478808564461976587, −12.3876373612967415672434941251, −11.63728857883778531337834566046, −10.65506922219411421206268173653, −10.04728582076037380668048045315, −8.39819994406826356075231798978, −7.46692728764230722524359307833, −6.24502861163529183365975003580, −4.40296764731940860137855291109, −3.4033308607555479655726216649, −1.152522027534157389097841668484,
0.78290185800664870127659789994, 2.41173899673415020770394661435, 4.81312835198557912241241914816, 5.889110673223137511075494065823, 7.256723892972117457355839377000, 7.99943212187914671573033615830, 9.1431120541320999196876076166, 10.68049764266811150642984484402, 11.76752600710534724120575071597, 12.114032814722025731645188937389, 13.99671928769729502695919046654, 15.547159585469691285710958976836, 16.02956102671995833004298069609, 17.28670450741386062756356716180, 18.119593032970965526028497728040, 18.92940271792914958167185086764, 19.83150260404620916018501848947, 21.04896129820662040317579036590, 22.51015843538633470162647614260, 23.56343145930060635425546547262, 24.42270940228662171916795167915, 24.92166616970107024203510751417, 26.407348443521650219846637908, 27.517203936615034008661118475822, 28.04120248957927848872168736756