Properties

Label 1-1472-1472.229-r1-0-0
Degree 11
Conductor 14721472
Sign 0.9950.0980i-0.995 - 0.0980i
Analytic cond. 158.188158.188
Root an. cond. 158.188158.188
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.382 − 0.923i)3-s + (0.923 + 0.382i)5-s + (0.707 + 0.707i)7-s + (−0.707 + 0.707i)9-s + (−0.382 + 0.923i)11-s + (−0.923 + 0.382i)13-s i·15-s i·17-s + (−0.923 + 0.382i)19-s + (0.382 − 0.923i)21-s + (0.707 + 0.707i)25-s + (0.923 + 0.382i)27-s + (0.382 + 0.923i)29-s − 31-s + 33-s + ⋯
L(s)  = 1  + (−0.382 − 0.923i)3-s + (0.923 + 0.382i)5-s + (0.707 + 0.707i)7-s + (−0.707 + 0.707i)9-s + (−0.382 + 0.923i)11-s + (−0.923 + 0.382i)13-s i·15-s i·17-s + (−0.923 + 0.382i)19-s + (0.382 − 0.923i)21-s + (0.707 + 0.707i)25-s + (0.923 + 0.382i)27-s + (0.382 + 0.923i)29-s − 31-s + 33-s + ⋯

Functional equation

Λ(s)=(1472s/2ΓR(s+1)L(s)=((0.9950.0980i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.995 - 0.0980i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1472s/2ΓR(s+1)L(s)=((0.9950.0980i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.995 - 0.0980i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 14721472    =    26232^{6} \cdot 23
Sign: 0.9950.0980i-0.995 - 0.0980i
Analytic conductor: 158.188158.188
Root analytic conductor: 158.188158.188
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1472(229,)\chi_{1472} (229, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 1472, (1: ), 0.9950.0980i)(1,\ 1472,\ (1:\ ),\ -0.995 - 0.0980i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.02283845520+0.4648874355i0.02283845520 + 0.4648874355i
L(12)L(\frac12) \approx 0.02283845520+0.4648874355i0.02283845520 + 0.4648874355i
L(1)L(1) \approx 0.9194964356+0.08537392023i0.9194964356 + 0.08537392023i
L(1)L(1) \approx 0.9194964356+0.08537392023i0.9194964356 + 0.08537392023i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
23 1 1
good3 1+(0.3820.923i)T 1 + (-0.382 - 0.923i)T
5 1+(0.923+0.382i)T 1 + (0.923 + 0.382i)T
7 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
11 1+(0.382+0.923i)T 1 + (-0.382 + 0.923i)T
13 1+(0.923+0.382i)T 1 + (-0.923 + 0.382i)T
17 1iT 1 - iT
19 1+(0.923+0.382i)T 1 + (-0.923 + 0.382i)T
29 1+(0.382+0.923i)T 1 + (0.382 + 0.923i)T
31 1T 1 - T
37 1+(0.9230.382i)T 1 + (-0.923 - 0.382i)T
41 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
43 1+(0.3820.923i)T 1 + (0.382 - 0.923i)T
47 1iT 1 - iT
53 1+(0.382+0.923i)T 1 + (-0.382 + 0.923i)T
59 1+(0.9230.382i)T 1 + (-0.923 - 0.382i)T
61 1+(0.382+0.923i)T 1 + (0.382 + 0.923i)T
67 1+(0.382+0.923i)T 1 + (0.382 + 0.923i)T
71 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
73 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
79 1iT 1 - iT
83 1+(0.923+0.382i)T 1 + (-0.923 + 0.382i)T
89 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
97 1+T 1 + T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−20.3201523039212997431240237134, −19.5647348391014363297504263589, −18.3664218339535677283841926941, −17.53459335928161277855074223173, −17.17030283636118995993513611244, −16.42739501756628818319695833284, −15.73551413219801511229927950182, −14.66481423304659249253942315679, −14.17270331634143838897444459165, −13.35272413567800470362813735527, −12.483130227920050147979774338782, −11.38692747070939436110663038525, −10.85879928904245190197591585601, −10.074676462186098595010554311086, −9.43902384674799899108390924702, −8.58711273901169158201325119931, −7.7146961154773845000707939726, −6.54759477407648719342732666362, −5.7060806652244473982193724285, −4.91832387629215200752166148766, −4.47097944561654185463754673706, −3.19709155986031735653916875475, −2.31538305486104618542891074694, −0.9541794929671753883152083415, −0.09374587100710976254812818618, 1.71126699312696083010647550173, 1.90601046817269251763498320119, 2.78531637258987443364618276139, 4.37850797204201810182828207878, 5.374103052848471940058171641413, 5.81890104059041386351189454089, 6.889493214488791761179396031109, 7.388474254706020984039169119692, 8.466094286965919946890629799691, 9.158308814101096881849975760009, 10.38640779012982185868217348869, 10.761770566035169946322696165843, 11.94754311390091813389129962420, 12.51665622014219500369315768297, 13.056867736131312013779733293971, 14.27521378814795409803796129442, 14.52925382731349795279808584012, 15.41945548962643786317873397056, 16.722543268886140338427905559010, 17.40119001336108954092383341884, 17.76088208209420214346772721235, 18.58617644801517866601627595942, 19.102842067496640487183455190231, 20.057539268323852514243568616866, 20.997213658824409776773188846231

Graph of the ZZ-function along the critical line