L(s) = 1 | + (−0.382 − 0.923i)3-s + (0.923 + 0.382i)5-s + (0.707 + 0.707i)7-s + (−0.707 + 0.707i)9-s + (−0.382 + 0.923i)11-s + (−0.923 + 0.382i)13-s − i·15-s − i·17-s + (−0.923 + 0.382i)19-s + (0.382 − 0.923i)21-s + (0.707 + 0.707i)25-s + (0.923 + 0.382i)27-s + (0.382 + 0.923i)29-s − 31-s + 33-s + ⋯ |
L(s) = 1 | + (−0.382 − 0.923i)3-s + (0.923 + 0.382i)5-s + (0.707 + 0.707i)7-s + (−0.707 + 0.707i)9-s + (−0.382 + 0.923i)11-s + (−0.923 + 0.382i)13-s − i·15-s − i·17-s + (−0.923 + 0.382i)19-s + (0.382 − 0.923i)21-s + (0.707 + 0.707i)25-s + (0.923 + 0.382i)27-s + (0.382 + 0.923i)29-s − 31-s + 33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.995 - 0.0980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.995 - 0.0980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.02283845520 + 0.4648874355i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.02283845520 + 0.4648874355i\) |
\(L(1)\) |
\(\approx\) |
\(0.9194964356 + 0.08537392023i\) |
\(L(1)\) |
\(\approx\) |
\(0.9194964356 + 0.08537392023i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 23 | \( 1 \) |
good | 3 | \( 1 + (-0.382 - 0.923i)T \) |
| 5 | \( 1 + (0.923 + 0.382i)T \) |
| 7 | \( 1 + (0.707 + 0.707i)T \) |
| 11 | \( 1 + (-0.382 + 0.923i)T \) |
| 13 | \( 1 + (-0.923 + 0.382i)T \) |
| 17 | \( 1 - iT \) |
| 19 | \( 1 + (-0.923 + 0.382i)T \) |
| 29 | \( 1 + (0.382 + 0.923i)T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 + (-0.923 - 0.382i)T \) |
| 41 | \( 1 + (0.707 - 0.707i)T \) |
| 43 | \( 1 + (0.382 - 0.923i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (-0.382 + 0.923i)T \) |
| 59 | \( 1 + (-0.923 - 0.382i)T \) |
| 61 | \( 1 + (0.382 + 0.923i)T \) |
| 67 | \( 1 + (0.382 + 0.923i)T \) |
| 71 | \( 1 + (-0.707 - 0.707i)T \) |
| 73 | \( 1 + (-0.707 + 0.707i)T \) |
| 79 | \( 1 - iT \) |
| 83 | \( 1 + (-0.923 + 0.382i)T \) |
| 89 | \( 1 + (-0.707 - 0.707i)T \) |
| 97 | \( 1 + T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.3201523039212997431240237134, −19.5647348391014363297504263589, −18.3664218339535677283841926941, −17.53459335928161277855074223173, −17.17030283636118995993513611244, −16.42739501756628818319695833284, −15.73551413219801511229927950182, −14.66481423304659249253942315679, −14.17270331634143838897444459165, −13.35272413567800470362813735527, −12.483130227920050147979774338782, −11.38692747070939436110663038525, −10.85879928904245190197591585601, −10.074676462186098595010554311086, −9.43902384674799899108390924702, −8.58711273901169158201325119931, −7.7146961154773845000707939726, −6.54759477407648719342732666362, −5.7060806652244473982193724285, −4.91832387629215200752166148766, −4.47097944561654185463754673706, −3.19709155986031735653916875475, −2.31538305486104618542891074694, −0.9541794929671753883152083415, −0.09374587100710976254812818618,
1.71126699312696083010647550173, 1.90601046817269251763498320119, 2.78531637258987443364618276139, 4.37850797204201810182828207878, 5.374103052848471940058171641413, 5.81890104059041386351189454089, 6.889493214488791761179396031109, 7.388474254706020984039169119692, 8.466094286965919946890629799691, 9.158308814101096881849975760009, 10.38640779012982185868217348869, 10.761770566035169946322696165843, 11.94754311390091813389129962420, 12.51665622014219500369315768297, 13.056867736131312013779733293971, 14.27521378814795409803796129442, 14.52925382731349795279808584012, 15.41945548962643786317873397056, 16.722543268886140338427905559010, 17.40119001336108954092383341884, 17.76088208209420214346772721235, 18.58617644801517866601627595942, 19.102842067496640487183455190231, 20.057539268323852514243568616866, 20.997213658824409776773188846231