L(s) = 1 | + (−0.589 + 0.807i)3-s + (0.536 + 0.843i)5-s + (−0.304 − 0.952i)9-s + (−0.687 + 0.725i)11-s + (0.572 − 0.820i)13-s + (−0.997 − 0.0640i)15-s + (−0.0534 + 0.998i)17-s + (0.5 − 0.866i)19-s + (−0.961 + 0.274i)23-s + (−0.424 + 0.905i)25-s + (0.949 + 0.315i)27-s + (−0.718 + 0.695i)29-s + (0.826 + 0.563i)31-s + (−0.180 − 0.983i)33-s + (−0.891 + 0.453i)37-s + ⋯ |
L(s) = 1 | + (−0.589 + 0.807i)3-s + (0.536 + 0.843i)5-s + (−0.304 − 0.952i)9-s + (−0.687 + 0.725i)11-s + (0.572 − 0.820i)13-s + (−0.997 − 0.0640i)15-s + (−0.0534 + 0.998i)17-s + (0.5 − 0.866i)19-s + (−0.961 + 0.274i)23-s + (−0.424 + 0.905i)25-s + (0.949 + 0.315i)27-s + (−0.718 + 0.695i)29-s + (0.826 + 0.563i)31-s + (−0.180 − 0.983i)33-s + (−0.891 + 0.453i)37-s + ⋯ |
Λ(s)=(=(2744s/2ΓR(s)L(s)(−0.778−0.628i)Λ(1−s)
Λ(s)=(=(2744s/2ΓR(s)L(s)(−0.778−0.628i)Λ(1−s)
Degree: |
1 |
Conductor: |
2744
= 23⋅73
|
Sign: |
−0.778−0.628i
|
Analytic conductor: |
12.7430 |
Root analytic conductor: |
12.7430 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2744(501,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 2744, (0: ), −0.778−0.628i)
|
Particular Values
L(21) |
≈ |
−0.1508219990+0.4268397973i |
L(21) |
≈ |
−0.1508219990+0.4268397973i |
L(1) |
≈ |
0.6946805950+0.3660855761i |
L(1) |
≈ |
0.6946805950+0.3660855761i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
good | 3 | 1+(−0.589+0.807i)T |
| 5 | 1+(0.536+0.843i)T |
| 11 | 1+(−0.687+0.725i)T |
| 13 | 1+(0.572−0.820i)T |
| 17 | 1+(−0.0534+0.998i)T |
| 19 | 1+(0.5−0.866i)T |
| 23 | 1+(−0.961+0.274i)T |
| 29 | 1+(−0.718+0.695i)T |
| 31 | 1+(0.826+0.563i)T |
| 37 | 1+(−0.891+0.453i)T |
| 41 | 1+(−0.761−0.648i)T |
| 43 | 1+(−0.801−0.598i)T |
| 47 | 1+(0.443−0.896i)T |
| 53 | 1+(0.999+0.0213i)T |
| 59 | 1+(−0.942−0.335i)T |
| 61 | 1+(0.640+0.768i)T |
| 67 | 1+(−0.0747−0.997i)T |
| 71 | 1+(0.718+0.695i)T |
| 73 | 1+(0.443+0.896i)T |
| 79 | 1+(−0.733−0.680i)T |
| 83 | 1+(−0.926+0.375i)T |
| 89 | 1+(−0.860+0.509i)T |
| 97 | 1+(−0.900+0.433i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.51607714023535254169937612318, −18.33730015584345583351286093731, −17.42407346942339352933637789697, −16.60493895882876286720892579048, −16.326673377519419081657854597618, −15.580338927345531212085160242764, −14.11327421696849162887354442185, −13.768314202471742505889307185631, −13.229616393279811291200771349, −12.3725470843140062432504088963, −11.75518056911955297578896182089, −11.16863978617358685680292144953, −10.155972935202792695644019245317, −9.49684147824590401346843396893, −8.44884265066158506623897640483, −8.04185780442628059892966016314, −7.09065522684483653077418574514, −6.13736085311417955690456363307, −5.72674879309378479705352508048, −4.95125889763282811262874292024, −4.08297775828639929673056778800, −2.825440004839329235559656943921, −1.92910031812000320719491858964, −1.20806910060120664506873074843, −0.154451569519394403536667882759,
1.4186021208928518518191912727, 2.47233480803009648322422814445, 3.363676534747922204105590188482, 3.98645530027683077857547671117, 5.27005783663004397400371516221, 5.45364109277252047218929079583, 6.51186181313969195814904803920, 7.067890507029383307082398925248, 8.153733971746921454309033748480, 8.97300171331925594374308303461, 9.994366597313163484652123200510, 10.30745572945852970612626440057, 10.85760781029075498756276663407, 11.71591940972765743116657211424, 12.49177380463342284877315501286, 13.37712085549127309237711745914, 14.02425801067938940535306420333, 15.19087251988365778549812723972, 15.23363300888199017615768988207, 16.000734707574596374321120930678, 17.07747993764854829524616359336, 17.54360281420470128192785916013, 18.14341002566927635180787056000, 18.694806411022703805613348007249, 19.94570736601637030943637411357