L(s) = 1 | + 3-s − 5-s + 7-s + 9-s − 11-s + 13-s − 15-s + 17-s + 21-s + 23-s + 25-s + 27-s + 29-s − 31-s − 33-s − 35-s + 37-s + 39-s − 41-s − 43-s − 45-s + 47-s + 49-s + 51-s + 53-s + 55-s + 59-s + ⋯ |
L(s) = 1 | + 3-s − 5-s + 7-s + 9-s − 11-s + 13-s − 15-s + 17-s + 21-s + 23-s + 25-s + 27-s + 29-s − 31-s − 33-s − 35-s + 37-s + 39-s − 41-s − 43-s − 45-s + 47-s + 49-s + 51-s + 53-s + 55-s + 59-s + ⋯ |
Λ(s)=(=(152s/2ΓR(s+1)L(s)Λ(1−s)
Λ(s)=(=(152s/2ΓR(s+1)L(s)Λ(1−s)
Degree: |
1 |
Conductor: |
152
= 23⋅19
|
Sign: |
1
|
Analytic conductor: |
16.3346 |
Root analytic conductor: |
16.3346 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ152(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(1, 152, (1: ), 1)
|
Particular Values
L(21) |
≈ |
2.547011170 |
L(21) |
≈ |
2.547011170 |
L(1) |
≈ |
1.528900874 |
L(1) |
≈ |
1.528900874 |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 19 | 1 |
good | 3 | 1+T |
| 5 | 1−T |
| 7 | 1+T |
| 11 | 1−T |
| 13 | 1+T |
| 17 | 1+T |
| 23 | 1+T |
| 29 | 1+T |
| 31 | 1−T |
| 37 | 1+T |
| 41 | 1−T |
| 43 | 1−T |
| 47 | 1+T |
| 53 | 1+T |
| 59 | 1+T |
| 61 | 1−T |
| 67 | 1+T |
| 71 | 1−T |
| 73 | 1+T |
| 79 | 1−T |
| 83 | 1−T |
| 89 | 1−T |
| 97 | 1−T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−27.45887285573937389820892798541, −26.94809649814633933966714367866, −25.85024417749752603888994601316, −24.95406852489626898469612227179, −23.72252832878027149694686841421, −23.335080669753099723586315482, −21.51870268947889990682587448961, −20.77525963658662156807406933432, −20.01976512568988203097134503495, −18.77260169016316670869643134353, −18.2645953095371647299663582579, −16.52909859818801048029930065168, −15.4792864110982358339660426088, −14.79826939888833507246297202049, −13.69400838589107345023346018473, −12.5982080877174889675810617196, −11.331986857680979264308302444429, −10.31849529825159021449394279600, −8.69716745995560468494862953100, −8.06630160341600837143926917835, −7.174690552612637897130104196306, −5.17808792097857683595651995091, −3.97177712649849110830621889787, −2.84505871867905888360710213691, −1.191133512716638333409087237597,
1.191133512716638333409087237597, 2.84505871867905888360710213691, 3.97177712649849110830621889787, 5.17808792097857683595651995091, 7.174690552612637897130104196306, 8.06630160341600837143926917835, 8.69716745995560468494862953100, 10.31849529825159021449394279600, 11.331986857680979264308302444429, 12.5982080877174889675810617196, 13.69400838589107345023346018473, 14.79826939888833507246297202049, 15.4792864110982358339660426088, 16.52909859818801048029930065168, 18.2645953095371647299663582579, 18.77260169016316670869643134353, 20.01976512568988203097134503495, 20.77525963658662156807406933432, 21.51870268947889990682587448961, 23.335080669753099723586315482, 23.72252832878027149694686841421, 24.95406852489626898469612227179, 25.85024417749752603888994601316, 26.94809649814633933966714367866, 27.45887285573937389820892798541