Properties

Label 1-152-152.37-r1-0-0
Degree $1$
Conductor $152$
Sign $1$
Analytic cond. $16.3346$
Root an. cond. $16.3346$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 7-s + 9-s − 11-s + 13-s − 15-s + 17-s + 21-s + 23-s + 25-s + 27-s + 29-s − 31-s − 33-s − 35-s + 37-s + 39-s − 41-s − 43-s − 45-s + 47-s + 49-s + 51-s + 53-s + 55-s + 59-s + ⋯
L(s)  = 1  + 3-s − 5-s + 7-s + 9-s − 11-s + 13-s − 15-s + 17-s + 21-s + 23-s + 25-s + 27-s + 29-s − 31-s − 33-s − 35-s + 37-s + 39-s − 41-s − 43-s − 45-s + 47-s + 49-s + 51-s + 53-s + 55-s + 59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(152\)    =    \(2^{3} \cdot 19\)
Sign: $1$
Analytic conductor: \(16.3346\)
Root analytic conductor: \(16.3346\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{152} (37, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 152,\ (1:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.547011170\)
\(L(\frac12)\) \(\approx\) \(2.547011170\)
\(L(1)\) \(\approx\) \(1.528900874\)
\(L(1)\) \(\approx\) \(1.528900874\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 \)
good3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 + T \)
17 \( 1 + T \)
23 \( 1 + T \)
29 \( 1 + T \)
31 \( 1 - T \)
37 \( 1 + T \)
41 \( 1 - T \)
43 \( 1 - T \)
47 \( 1 + T \)
53 \( 1 + T \)
59 \( 1 + T \)
61 \( 1 - T \)
67 \( 1 + T \)
71 \( 1 - T \)
73 \( 1 + T \)
79 \( 1 - T \)
83 \( 1 - T \)
89 \( 1 - T \)
97 \( 1 - T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−27.45887285573937389820892798541, −26.94809649814633933966714367866, −25.85024417749752603888994601316, −24.95406852489626898469612227179, −23.72252832878027149694686841421, −23.335080669753099723586315482, −21.51870268947889990682587448961, −20.77525963658662156807406933432, −20.01976512568988203097134503495, −18.77260169016316670869643134353, −18.2645953095371647299663582579, −16.52909859818801048029930065168, −15.4792864110982358339660426088, −14.79826939888833507246297202049, −13.69400838589107345023346018473, −12.5982080877174889675810617196, −11.331986857680979264308302444429, −10.31849529825159021449394279600, −8.69716745995560468494862953100, −8.06630160341600837143926917835, −7.174690552612637897130104196306, −5.17808792097857683595651995091, −3.97177712649849110830621889787, −2.84505871867905888360710213691, −1.191133512716638333409087237597, 1.191133512716638333409087237597, 2.84505871867905888360710213691, 3.97177712649849110830621889787, 5.17808792097857683595651995091, 7.174690552612637897130104196306, 8.06630160341600837143926917835, 8.69716745995560468494862953100, 10.31849529825159021449394279600, 11.331986857680979264308302444429, 12.5982080877174889675810617196, 13.69400838589107345023346018473, 14.79826939888833507246297202049, 15.4792864110982358339660426088, 16.52909859818801048029930065168, 18.2645953095371647299663582579, 18.77260169016316670869643134353, 20.01976512568988203097134503495, 20.77525963658662156807406933432, 21.51870268947889990682587448961, 23.335080669753099723586315482, 23.72252832878027149694686841421, 24.95406852489626898469612227179, 25.85024417749752603888994601316, 26.94809649814633933966714367866, 27.45887285573937389820892798541

Graph of the $Z$-function along the critical line