L(s) = 1 | + (−0.642 − 0.766i)3-s + (0.5 − 0.866i)7-s + (−0.173 + 0.984i)9-s + (0.866 − 0.5i)11-s + (−0.642 + 0.766i)13-s + (−0.173 − 0.984i)17-s + (−0.984 + 0.173i)21-s + (0.939 − 0.342i)23-s + (0.866 − 0.5i)27-s + (−0.984 − 0.173i)29-s + (−0.5 + 0.866i)31-s + (−0.939 − 0.342i)33-s − i·37-s + 39-s + (0.766 − 0.642i)41-s + ⋯ |
L(s) = 1 | + (−0.642 − 0.766i)3-s + (0.5 − 0.866i)7-s + (−0.173 + 0.984i)9-s + (0.866 − 0.5i)11-s + (−0.642 + 0.766i)13-s + (−0.173 − 0.984i)17-s + (−0.984 + 0.173i)21-s + (0.939 − 0.342i)23-s + (0.866 − 0.5i)27-s + (−0.984 − 0.173i)29-s + (−0.5 + 0.866i)31-s + (−0.939 − 0.342i)33-s − i·37-s + 39-s + (0.766 − 0.642i)41-s + ⋯ |
Λ(s)=(=(1520s/2ΓR(s)L(s)(−0.608−0.793i)Λ(1−s)
Λ(s)=(=(1520s/2ΓR(s)L(s)(−0.608−0.793i)Λ(1−s)
Degree: |
1 |
Conductor: |
1520
= 24⋅5⋅19
|
Sign: |
−0.608−0.793i
|
Analytic conductor: |
7.05885 |
Root analytic conductor: |
7.05885 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1520(1219,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1520, (0: ), −0.608−0.793i)
|
Particular Values
L(21) |
≈ |
0.4932367457−0.9993628553i |
L(21) |
≈ |
0.4932367457−0.9993628553i |
L(1) |
≈ |
0.8144624232−0.3897838697i |
L(1) |
≈ |
0.8144624232−0.3897838697i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1 |
good | 3 | 1+(−0.642−0.766i)T |
| 7 | 1+(0.5−0.866i)T |
| 11 | 1+(0.866−0.5i)T |
| 13 | 1+(−0.642+0.766i)T |
| 17 | 1+(−0.173−0.984i)T |
| 23 | 1+(0.939−0.342i)T |
| 29 | 1+(−0.984−0.173i)T |
| 31 | 1+(−0.5+0.866i)T |
| 37 | 1−iT |
| 41 | 1+(0.766−0.642i)T |
| 43 | 1+(−0.342+0.939i)T |
| 47 | 1+(0.173−0.984i)T |
| 53 | 1+(0.342+0.939i)T |
| 59 | 1+(0.984−0.173i)T |
| 61 | 1+(−0.342−0.939i)T |
| 67 | 1+(−0.984−0.173i)T |
| 71 | 1+(0.939+0.342i)T |
| 73 | 1+(0.766−0.642i)T |
| 79 | 1+(0.766−0.642i)T |
| 83 | 1+(−0.866−0.5i)T |
| 89 | 1+(0.766+0.642i)T |
| 97 | 1+(0.173+0.984i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−20.99350478051119190652137250785, −20.233140024879926153517891906091, −19.42479019466058245867476358250, −18.487685856502985610521181496290, −17.649620714591327677973426276245, −17.170973347407330528974004191646, −16.50925778180110411961572477569, −15.265066882624968886472590876846, −15.10579955664929099865798594358, −14.47331001727470214310660262631, −13.03394499410899144511409604559, −12.40920490454293205168702193178, −11.60576056009308433369220123469, −11.05324118768598034706131206808, −10.10489032399700660591612334053, −9.38137799842429446632833241195, −8.72044950299954078513377558864, −7.68996847196477916568035387089, −6.658132996504412197306878402107, −5.77614250933124068541169711374, −5.172358084298032401213602343916, −4.318898820695111514595483959977, −3.45930856337848328996481187441, −2.327888359328983626091101934, −1.200594159274192172050846465247,
0.50719657293311034055652175809, 1.44483992777328841422197203080, 2.36232234736144817493853912906, 3.66019119059126914199848941675, 4.63557088967557371801158041277, 5.32563077442436982080952941122, 6.42483037689576502294569840647, 7.11413437107265899353369812531, 7.5719124856473357058723523824, 8.74405761263748612364932414087, 9.49238726673612693240691316214, 10.70399038740891042284242272214, 11.213499472734777791217345159007, 11.87473506222320007119882243921, 12.68314168217954402338519967427, 13.607489788321370342168326139387, 14.131301576542124576995718413532, 14.82005461172103396254223982170, 16.24183816477816901999192035915, 16.67494088781602007742867044641, 17.305879857048232473638059224106, 18.02814035439195201148282139804, 18.82576306389111005003858351575, 19.528577269528604696162224915024, 20.14512573898411497585883424430