Properties

Label 1-1520-1520.1219-r0-0-0
Degree 11
Conductor 15201520
Sign 0.6080.793i-0.608 - 0.793i
Analytic cond. 7.058857.05885
Root an. cond. 7.058857.05885
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.642 − 0.766i)3-s + (0.5 − 0.866i)7-s + (−0.173 + 0.984i)9-s + (0.866 − 0.5i)11-s + (−0.642 + 0.766i)13-s + (−0.173 − 0.984i)17-s + (−0.984 + 0.173i)21-s + (0.939 − 0.342i)23-s + (0.866 − 0.5i)27-s + (−0.984 − 0.173i)29-s + (−0.5 + 0.866i)31-s + (−0.939 − 0.342i)33-s i·37-s + 39-s + (0.766 − 0.642i)41-s + ⋯
L(s)  = 1  + (−0.642 − 0.766i)3-s + (0.5 − 0.866i)7-s + (−0.173 + 0.984i)9-s + (0.866 − 0.5i)11-s + (−0.642 + 0.766i)13-s + (−0.173 − 0.984i)17-s + (−0.984 + 0.173i)21-s + (0.939 − 0.342i)23-s + (0.866 − 0.5i)27-s + (−0.984 − 0.173i)29-s + (−0.5 + 0.866i)31-s + (−0.939 − 0.342i)33-s i·37-s + 39-s + (0.766 − 0.642i)41-s + ⋯

Functional equation

Λ(s)=(1520s/2ΓR(s)L(s)=((0.6080.793i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1520 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.608 - 0.793i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1520s/2ΓR(s)L(s)=((0.6080.793i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1520 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.608 - 0.793i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 15201520    =    245192^{4} \cdot 5 \cdot 19
Sign: 0.6080.793i-0.608 - 0.793i
Analytic conductor: 7.058857.05885
Root analytic conductor: 7.058857.05885
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1520(1219,)\chi_{1520} (1219, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 1520, (0: ), 0.6080.793i)(1,\ 1520,\ (0:\ ),\ -0.608 - 0.793i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.49323674570.9993628553i0.4932367457 - 0.9993628553i
L(12)L(\frac12) \approx 0.49323674570.9993628553i0.4932367457 - 0.9993628553i
L(1)L(1) \approx 0.81446242320.3897838697i0.8144624232 - 0.3897838697i
L(1)L(1) \approx 0.81446242320.3897838697i0.8144624232 - 0.3897838697i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
19 1 1
good3 1+(0.6420.766i)T 1 + (-0.642 - 0.766i)T
7 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
11 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
13 1+(0.642+0.766i)T 1 + (-0.642 + 0.766i)T
17 1+(0.1730.984i)T 1 + (-0.173 - 0.984i)T
23 1+(0.9390.342i)T 1 + (0.939 - 0.342i)T
29 1+(0.9840.173i)T 1 + (-0.984 - 0.173i)T
31 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
37 1iT 1 - iT
41 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
43 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
47 1+(0.1730.984i)T 1 + (0.173 - 0.984i)T
53 1+(0.342+0.939i)T 1 + (0.342 + 0.939i)T
59 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
61 1+(0.3420.939i)T 1 + (-0.342 - 0.939i)T
67 1+(0.9840.173i)T 1 + (-0.984 - 0.173i)T
71 1+(0.939+0.342i)T 1 + (0.939 + 0.342i)T
73 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
79 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
83 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
89 1+(0.766+0.642i)T 1 + (0.766 + 0.642i)T
97 1+(0.173+0.984i)T 1 + (0.173 + 0.984i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−20.99350478051119190652137250785, −20.233140024879926153517891906091, −19.42479019466058245867476358250, −18.487685856502985610521181496290, −17.649620714591327677973426276245, −17.170973347407330528974004191646, −16.50925778180110411961572477569, −15.265066882624968886472590876846, −15.10579955664929099865798594358, −14.47331001727470214310660262631, −13.03394499410899144511409604559, −12.40920490454293205168702193178, −11.60576056009308433369220123469, −11.05324118768598034706131206808, −10.10489032399700660591612334053, −9.38137799842429446632833241195, −8.72044950299954078513377558864, −7.68996847196477916568035387089, −6.658132996504412197306878402107, −5.77614250933124068541169711374, −5.172358084298032401213602343916, −4.318898820695111514595483959977, −3.45930856337848328996481187441, −2.327888359328983626091101934, −1.200594159274192172050846465247, 0.50719657293311034055652175809, 1.44483992777328841422197203080, 2.36232234736144817493853912906, 3.66019119059126914199848941675, 4.63557088967557371801158041277, 5.32563077442436982080952941122, 6.42483037689576502294569840647, 7.11413437107265899353369812531, 7.5719124856473357058723523824, 8.74405761263748612364932414087, 9.49238726673612693240691316214, 10.70399038740891042284242272214, 11.213499472734777791217345159007, 11.87473506222320007119882243921, 12.68314168217954402338519967427, 13.607489788321370342168326139387, 14.131301576542124576995718413532, 14.82005461172103396254223982170, 16.24183816477816901999192035915, 16.67494088781602007742867044641, 17.305879857048232473638059224106, 18.02814035439195201148282139804, 18.82576306389111005003858351575, 19.528577269528604696162224915024, 20.14512573898411497585883424430

Graph of the ZZ-function along the critical line