L(s) = 1 | + (−0.972 + 0.233i)3-s + (−0.382 − 0.923i)7-s + (0.891 − 0.453i)9-s + (−0.760 + 0.649i)11-s + (0.309 − 0.951i)13-s + (0.987 − 0.156i)19-s + (0.587 + 0.809i)21-s + (−0.649 − 0.760i)23-s + (−0.760 + 0.649i)27-s + (−0.972 + 0.233i)29-s + (−0.852 + 0.522i)31-s + (0.587 − 0.809i)33-s + (0.649 − 0.760i)37-s + (−0.0784 + 0.996i)39-s + (−0.0784 − 0.996i)41-s + ⋯ |
L(s) = 1 | + (−0.972 + 0.233i)3-s + (−0.382 − 0.923i)7-s + (0.891 − 0.453i)9-s + (−0.760 + 0.649i)11-s + (0.309 − 0.951i)13-s + (0.987 − 0.156i)19-s + (0.587 + 0.809i)21-s + (−0.649 − 0.760i)23-s + (−0.760 + 0.649i)27-s + (−0.972 + 0.233i)29-s + (−0.852 + 0.522i)31-s + (0.587 − 0.809i)33-s + (0.649 − 0.760i)37-s + (−0.0784 + 0.996i)39-s + (−0.0784 − 0.996i)41-s + ⋯ |
Λ(s)=(=(1700s/2ΓR(s+1)L(s)(−0.732+0.680i)Λ(1−s)
Λ(s)=(=(1700s/2ΓR(s+1)L(s)(−0.732+0.680i)Λ(1−s)
Degree: |
1 |
Conductor: |
1700
= 22⋅52⋅17
|
Sign: |
−0.732+0.680i
|
Analytic conductor: |
182.690 |
Root analytic conductor: |
182.690 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1700(1287,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1700, (1: ), −0.732+0.680i)
|
Particular Values
L(21) |
≈ |
−0.05713930315−0.1453521069i |
L(21) |
≈ |
−0.05713930315−0.1453521069i |
L(1) |
≈ |
0.6405246315−0.1146018336i |
L(1) |
≈ |
0.6405246315−0.1146018336i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 17 | 1 |
good | 3 | 1+(−0.972+0.233i)T |
| 7 | 1+(−0.382−0.923i)T |
| 11 | 1+(−0.760+0.649i)T |
| 13 | 1+(0.309−0.951i)T |
| 19 | 1+(0.987−0.156i)T |
| 23 | 1+(−0.649−0.760i)T |
| 29 | 1+(−0.972+0.233i)T |
| 31 | 1+(−0.852+0.522i)T |
| 37 | 1+(0.649−0.760i)T |
| 41 | 1+(−0.0784−0.996i)T |
| 43 | 1+(0.707−0.707i)T |
| 47 | 1+(−0.809+0.587i)T |
| 53 | 1+(−0.987−0.156i)T |
| 59 | 1+(0.891−0.453i)T |
| 61 | 1+(−0.649−0.760i)T |
| 67 | 1+(0.587−0.809i)T |
| 71 | 1+(−0.233−0.972i)T |
| 73 | 1+(0.996+0.0784i)T |
| 79 | 1+(0.852+0.522i)T |
| 83 | 1+(−0.156−0.987i)T |
| 89 | 1+(−0.951+0.309i)T |
| 97 | 1+(0.233+0.972i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−20.81138507766362923533495385441, −19.67764571449104537298168712630, −18.83070553559557175406451978451, −18.411419971323708585872831497930, −17.857010171610723799795042977478, −16.6939690297686093171035338910, −16.25273427194992148036807793407, −15.67250778264199328739890281246, −14.75230311679075732611582416096, −13.610248235858582549312689235403, −13.113970161994280911062135981536, −12.258571325804053215516517486311, −11.40761402716776039126582232004, −11.20757070486269647526489854227, −9.870246528016972470496592148303, −9.447999971939261799823708801681, −8.28069555835350538652463346340, −7.52315529717088265918784638693, −6.55593752060550365921676335694, −5.78204564955996429231778399837, −5.37664644715521709126477559202, −4.272507869382365215986002657023, −3.23900728827648467745325887188, −2.16426125695886391382825872515, −1.22787211933943854582374942140,
0.04788870806998440984402674490, 0.70948687532335482633525572127, 1.898968920273273695850604841496, 3.256717979989339435079031111485, 3.99619503797288052037060191752, 4.97590374396488621498785084429, 5.58348951736799764863437446815, 6.51999194648010333215427249792, 7.356665385631898209070315876633, 7.89355115276659322356592533378, 9.33067049135354788913926263828, 9.946768624456171789188303515316, 10.75183010732425604364994237471, 11.06410833568658862650814837857, 12.408349227536048872897307497505, 12.697552814065934334805473146269, 13.56772912709438617870034895873, 14.50770829478864379116605280409, 15.51099785706110892116529111485, 16.03631443426777812734530923532, 16.666668488061805484217779698313, 17.57208967159912898040551210412, 18.01630233049642994156920301698, 18.71937184616377066963764597591, 19.905898322625713759568027190336