L(s) = 1 | + (−0.649 − 0.760i)3-s + (0.382 − 0.923i)7-s + (−0.156 + 0.987i)9-s + (−0.522 − 0.852i)11-s + (0.587 + 0.809i)13-s + (−0.891 + 0.453i)19-s + (−0.951 + 0.309i)21-s + (0.522 + 0.852i)23-s + (0.852 − 0.522i)27-s + (−0.760 + 0.649i)29-s + (−0.0784 − 0.996i)31-s + (−0.309 + 0.951i)33-s + (−0.522 + 0.852i)37-s + (0.233 − 0.972i)39-s + (−0.233 − 0.972i)41-s + ⋯ |
L(s) = 1 | + (−0.649 − 0.760i)3-s + (0.382 − 0.923i)7-s + (−0.156 + 0.987i)9-s + (−0.522 − 0.852i)11-s + (0.587 + 0.809i)13-s + (−0.891 + 0.453i)19-s + (−0.951 + 0.309i)21-s + (0.522 + 0.852i)23-s + (0.852 − 0.522i)27-s + (−0.760 + 0.649i)29-s + (−0.0784 − 0.996i)31-s + (−0.309 + 0.951i)33-s + (−0.522 + 0.852i)37-s + (0.233 − 0.972i)39-s + (−0.233 − 0.972i)41-s + ⋯ |
Λ(s)=(=(1700s/2ΓR(s)L(s)(−0.0650+0.997i)Λ(1−s)
Λ(s)=(=(1700s/2ΓR(s)L(s)(−0.0650+0.997i)Λ(1−s)
Degree: |
1 |
Conductor: |
1700
= 22⋅52⋅17
|
Sign: |
−0.0650+0.997i
|
Analytic conductor: |
7.89476 |
Root analytic conductor: |
7.89476 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1700(771,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1700, (0: ), −0.0650+0.997i)
|
Particular Values
L(21) |
≈ |
0.2204664175+0.2353047618i |
L(21) |
≈ |
0.2204664175+0.2353047618i |
L(1) |
≈ |
0.6976613508−0.1635083394i |
L(1) |
≈ |
0.6976613508−0.1635083394i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 17 | 1 |
good | 3 | 1+(−0.649−0.760i)T |
| 7 | 1+(0.382−0.923i)T |
| 11 | 1+(−0.522−0.852i)T |
| 13 | 1+(0.587+0.809i)T |
| 19 | 1+(−0.891+0.453i)T |
| 23 | 1+(0.522+0.852i)T |
| 29 | 1+(−0.760+0.649i)T |
| 31 | 1+(−0.0784−0.996i)T |
| 37 | 1+(−0.522+0.852i)T |
| 41 | 1+(−0.233−0.972i)T |
| 43 | 1+(−0.707+0.707i)T |
| 47 | 1+(−0.951+0.309i)T |
| 53 | 1+(−0.453+0.891i)T |
| 59 | 1+(−0.156+0.987i)T |
| 61 | 1+(−0.852+0.522i)T |
| 67 | 1+(0.309−0.951i)T |
| 71 | 1+(−0.649−0.760i)T |
| 73 | 1+(−0.233+0.972i)T |
| 79 | 1+(−0.0784+0.996i)T |
| 83 | 1+(0.891−0.453i)T |
| 89 | 1+(0.587−0.809i)T |
| 97 | 1+(−0.760+0.649i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−20.53780181505385163905246344597, −19.368881088970926362138553086862, −18.413965977421122129080922543160, −17.86151553323758300503663465840, −17.29652136318650111021001312626, −16.32853984676868726585856121491, −15.61699823966872538299693831152, −15.05475191112998507634450375517, −14.571640060888981218278125221399, −13.132796593165027666679092528215, −12.59717495499264701041276648648, −11.80426334357907652225972759233, −10.96384431004698281355145845848, −10.441940432400206136869275976391, −9.56104217286850158406456751898, −8.75088297057110741075432349313, −8.07168772520760659644764358063, −6.84154397019229631401788443687, −6.09337012415717075047247211616, −5.15808425838592173418156071798, −4.791258989502444224097760715340, −3.66681155223594240131745086244, −2.71533882277470699270364697689, −1.68831829726445030109168922891, −0.13000971940886768125822671441,
1.20690350028386543739016791465, 1.839549777130026851768439519357, 3.16395287236150262926802569922, 4.1414472176515666622711964827, 5.04908868234665569103269691789, 5.92609634613033735778840540271, 6.62952998690247460368156072249, 7.46311952715205588690100584099, 8.106805793977217490685972304967, 8.959595968853954412377451970513, 10.1738978899748520719038860368, 10.99650170186674301763991862834, 11.28136851747602633102455260198, 12.24286099773699720090324551465, 13.29277001151464522510648502874, 13.513620297291852990650488655486, 14.36024656926075172822870482280, 15.3696058499444760302317299074, 16.51331188044249273232153049716, 16.72262381831180277689123731891, 17.524759913649506396648842193337, 18.40304607959976974496947118753, 18.91523330183098394211943370460, 19.58255918071835429012046103055, 20.59322922416846176391481406433