L(s) = 1 | + (0.866 + 0.5i)2-s + (−0.5 − 0.866i)3-s + (0.5 + 0.866i)4-s − i·6-s + (0.5 + 0.866i)7-s + i·8-s + (−0.5 + 0.866i)9-s − 11-s + (0.5 − 0.866i)12-s + (0.866 − 0.5i)13-s + i·14-s + (−0.5 + 0.866i)16-s + (−0.866 − 0.5i)17-s + (−0.866 + 0.5i)18-s + (−0.866 + 0.5i)19-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (−0.5 − 0.866i)3-s + (0.5 + 0.866i)4-s − i·6-s + (0.5 + 0.866i)7-s + i·8-s + (−0.5 + 0.866i)9-s − 11-s + (0.5 − 0.866i)12-s + (0.866 − 0.5i)13-s + i·14-s + (−0.5 + 0.866i)16-s + (−0.866 − 0.5i)17-s + (−0.866 + 0.5i)18-s + (−0.866 + 0.5i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.527 + 0.849i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.527 + 0.849i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9001091189 + 1.618523000i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9001091189 + 1.618523000i\) |
\(L(1)\) |
\(\approx\) |
\(1.246580372 + 0.5022449738i\) |
\(L(1)\) |
\(\approx\) |
\(1.246580372 + 0.5022449738i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 37 | \( 1 \) |
good | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
| 11 | \( 1 - T \) |
| 13 | \( 1 + (0.866 - 0.5i)T \) |
| 17 | \( 1 + (-0.866 - 0.5i)T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 + iT \) |
| 29 | \( 1 + iT \) |
| 31 | \( 1 + iT \) |
| 41 | \( 1 + (0.5 + 0.866i)T \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 + (0.866 + 0.5i)T \) |
| 61 | \( 1 + (0.866 - 0.5i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.5 - 0.866i)T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 + (-0.866 + 0.5i)T \) |
| 83 | \( 1 + (0.5 - 0.866i)T \) |
| 89 | \( 1 + (-0.866 - 0.5i)T \) |
| 97 | \( 1 + iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.674650899383449533823169999670, −25.93805394758823496475584917146, −24.21690718591520002371389488643, −23.58603646283815127134720055926, −22.82374323793221669934310366434, −21.80132601998789744304032873312, −20.85571213703511497254838833463, −20.516740700801109363340695962421, −19.14464023449799646663543316152, −17.8583218628951159390617467771, −16.7136425958631910200448991696, −15.68973116264773678820763937020, −14.910057017840579925637173191021, −13.75155942675759684058438037465, −12.86141359918584710970183803883, −11.419175115199532462269887317874, −10.83445148495825182149396331098, −10.07621004447785353353061595681, −8.57371914296390545104543344847, −6.80903731837888384902125445134, −5.74469223382393744293106336420, −4.489893873268840211704030050169, −3.966413663329096927844190246244, −2.317829846849179921754928768603, −0.490041515095635759796740199133,
1.82530210916908036025084375453, 3.01633030727476334941834371145, 4.86807078378908708705258940359, 5.65143626870383901813775084183, 6.625472391078992633769478223785, 7.8569576337560584905775912435, 8.589699622970304610546597432318, 10.83277962423472852098057382372, 11.58756802010387456750385993681, 12.731832875986161857236428234216, 13.27008402616332906533541070901, 14.46615887224237352453885531107, 15.57443647015887677773175837385, 16.37317406682414107587522464171, 17.86492356608748792922934496983, 18.10915947458509538989275155602, 19.60904068636811643217786524746, 20.91013103990571114288619314002, 21.697653771066088202826302152747, 22.81791079014500137965187680147, 23.49695569723890434693613325096, 24.32161288386743474758577548846, 25.19279019435990661173676446203, 25.82674889349103351338854527047, 27.359934876146971814023624325963