L(s) = 1 | − 2-s − 3-s + 4-s − 5-s + 6-s + 7-s − 8-s + 9-s + 10-s − 11-s − 12-s − 13-s − 14-s + 15-s + 16-s − 17-s − 18-s + 19-s − 20-s − 21-s + 22-s + 23-s + 24-s + 25-s + 26-s − 27-s + 28-s + ⋯ |
L(s) = 1 | − 2-s − 3-s + 4-s − 5-s + 6-s + 7-s − 8-s + 9-s + 10-s − 11-s − 12-s − 13-s − 14-s + 15-s + 16-s − 17-s − 18-s + 19-s − 20-s − 21-s + 22-s + 23-s + 24-s + 25-s + 26-s − 27-s + 28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4332289955\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4332289955\) |
\(L(1)\) |
\(\approx\) |
\(0.4750008885\) |
\(L(1)\) |
\(\approx\) |
\(0.4750008885\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 197 | \( 1 \) |
good | 2 | \( 1 - T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 + T \) |
| 11 | \( 1 - T \) |
| 13 | \( 1 - T \) |
| 17 | \( 1 - T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.91015549878388112275243373098, −26.69179915172111168984860069084, −24.8797145776674866369859770361, −24.10096993852439686588833832324, −23.51964211783655315769254609814, −22.20091746193614388946818149208, −21.11312455363948113257821184828, −20.161410190655384488370337217570, −19.101041912396701593884952390017, −18.11625822723174927712180828683, −17.551313996657898695121121330989, −16.41218087657527046400338574975, −15.658543266406915149414498187174, −14.78558369990380964076016332804, −12.793928035823971873550369159217, −11.77103220035168417289622195039, −11.1348867056033258260813644738, −10.32794976444752957642728447190, −8.90405576737827996770584228794, −7.60149056272632292052777748313, −7.18845902309268000133166862156, −5.51331778593733928444594361840, −4.47513802839947470737032323861, −2.53623353923091238315535545203, −0.82624711791797162386794860521,
0.82624711791797162386794860521, 2.53623353923091238315535545203, 4.47513802839947470737032323861, 5.51331778593733928444594361840, 7.18845902309268000133166862156, 7.60149056272632292052777748313, 8.90405576737827996770584228794, 10.32794976444752957642728447190, 11.1348867056033258260813644738, 11.77103220035168417289622195039, 12.793928035823971873550369159217, 14.78558369990380964076016332804, 15.658543266406915149414498187174, 16.41218087657527046400338574975, 17.551313996657898695121121330989, 18.11625822723174927712180828683, 19.101041912396701593884952390017, 20.161410190655384488370337217570, 21.11312455363948113257821184828, 22.20091746193614388946818149208, 23.51964211783655315769254609814, 24.10096993852439686588833832324, 24.8797145776674866369859770361, 26.69179915172111168984860069084, 26.91015549878388112275243373098