L(s) = 1 | + (−0.809 − 0.587i)3-s + i·7-s + (0.309 + 0.951i)9-s + (−0.951 − 0.309i)11-s + (−0.309 − 0.951i)13-s + (−0.587 − 0.809i)17-s + (0.587 + 0.809i)19-s + (0.587 − 0.809i)21-s + (−0.951 − 0.309i)23-s + (0.309 − 0.951i)27-s + (0.587 − 0.809i)29-s + (0.809 − 0.587i)31-s + (0.587 + 0.809i)33-s + (−0.309 − 0.951i)37-s + (−0.309 + 0.951i)39-s + ⋯ |
L(s) = 1 | + (−0.809 − 0.587i)3-s + i·7-s + (0.309 + 0.951i)9-s + (−0.951 − 0.309i)11-s + (−0.309 − 0.951i)13-s + (−0.587 − 0.809i)17-s + (0.587 + 0.809i)19-s + (0.587 − 0.809i)21-s + (−0.951 − 0.309i)23-s + (0.309 − 0.951i)27-s + (0.587 − 0.809i)29-s + (0.809 − 0.587i)31-s + (0.587 + 0.809i)33-s + (−0.309 − 0.951i)37-s + (−0.309 + 0.951i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.780 - 0.625i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.780 - 0.625i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1361366901 - 0.3876605351i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1361366901 - 0.3876605351i\) |
\(L(1)\) |
\(\approx\) |
\(0.6182584873 - 0.1588678174i\) |
\(L(1)\) |
\(\approx\) |
\(0.6182584873 - 0.1588678174i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-0.809 - 0.587i)T \) |
| 7 | \( 1 + iT \) |
| 11 | \( 1 + (-0.951 - 0.309i)T \) |
| 13 | \( 1 + (-0.309 - 0.951i)T \) |
| 17 | \( 1 + (-0.587 - 0.809i)T \) |
| 19 | \( 1 + (0.587 + 0.809i)T \) |
| 23 | \( 1 + (-0.951 - 0.309i)T \) |
| 29 | \( 1 + (0.587 - 0.809i)T \) |
| 31 | \( 1 + (0.809 - 0.587i)T \) |
| 37 | \( 1 + (-0.309 - 0.951i)T \) |
| 41 | \( 1 + (-0.309 - 0.951i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.587 + 0.809i)T \) |
| 53 | \( 1 + (-0.809 - 0.587i)T \) |
| 59 | \( 1 + (-0.951 + 0.309i)T \) |
| 61 | \( 1 + (-0.951 - 0.309i)T \) |
| 67 | \( 1 + (0.809 - 0.587i)T \) |
| 71 | \( 1 + (-0.809 - 0.587i)T \) |
| 73 | \( 1 + (0.951 + 0.309i)T \) |
| 79 | \( 1 + (-0.809 - 0.587i)T \) |
| 83 | \( 1 + (-0.809 + 0.587i)T \) |
| 89 | \( 1 + (0.309 - 0.951i)T \) |
| 97 | \( 1 + (0.587 - 0.809i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.3720672533461280870528358469, −23.63542472818526135622546664668, −23.191831653544505384439653228531, −21.95362593893559641309110104648, −21.503569060429191687406317080926, −20.394163233916193663641125164545, −19.71576913514370114108269537847, −18.361142971987097318297789200312, −17.6003097099340392480132496349, −16.84315920656300787707281475505, −15.99529340806297218743183595387, −15.255237787850840062323023212681, −14.05965441997778211690833184554, −13.16458028899732984219976182003, −12.06621163534045202674342708488, −11.17978031956272659855497629827, −10.317745644295511603909274370014, −9.696352261582907299493026715903, −8.36050226928974737188661271015, −7.09638501580768999928069440205, −6.381547009304692897532133789520, −4.97063282181268719199447103415, −4.42379567512762485348245704886, −3.19423345920826780639846317626, −1.4849072559701040194802770840,
0.26498896849805662510875437267, 2.00087878739302388283604247619, 2.95435456911883077457593818685, 4.76405917149432609078017127825, 5.57927271547639402814615044344, 6.30163783896814579888458786961, 7.65639750771766760993762249074, 8.26463209896971486001690569609, 9.72372547786250085694270842604, 10.61817581394707898206445965017, 11.68282997268812460666525049617, 12.32467516278085997151267689551, 13.19121617801598011941641921787, 14.13026200053435489231345710019, 15.59593403640639191501174605065, 15.93763944177045399014237555274, 17.19366214537328049240175689356, 18.13477357573103748280546518222, 18.479752500674838801811055360067, 19.50849662342221793682060869695, 20.64638313306267980970407361878, 21.598128580299261312136888143840, 22.53783957252884157301762065807, 22.95807458352101776818197246393, 24.28246618916523510760160366728