L(s) = 1 | + (−0.733 + 0.680i)2-s + (0.0747 − 0.997i)4-s + (0.623 + 0.781i)8-s + (0.222 + 0.974i)11-s + (−0.733 + 0.680i)13-s + (−0.988 − 0.149i)16-s + (−0.0747 − 0.997i)17-s + (0.5 − 0.866i)19-s + (−0.826 − 0.563i)22-s + (−0.900 + 0.433i)23-s + (0.0747 − 0.997i)26-s + (−0.826 + 0.563i)29-s + (0.5 − 0.866i)31-s + (0.826 − 0.563i)32-s + (0.733 + 0.680i)34-s + ⋯ |
L(s) = 1 | + (−0.733 + 0.680i)2-s + (0.0747 − 0.997i)4-s + (0.623 + 0.781i)8-s + (0.222 + 0.974i)11-s + (−0.733 + 0.680i)13-s + (−0.988 − 0.149i)16-s + (−0.0747 − 0.997i)17-s + (0.5 − 0.866i)19-s + (−0.826 − 0.563i)22-s + (−0.900 + 0.433i)23-s + (0.0747 − 0.997i)26-s + (−0.826 + 0.563i)29-s + (0.5 − 0.866i)31-s + (0.826 − 0.563i)32-s + (0.733 + 0.680i)34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.992 + 0.120i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.992 + 0.120i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8909697874 + 0.05401625016i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8909697874 + 0.05401625016i\) |
\(L(1)\) |
\(\approx\) |
\(0.6982148694 + 0.1635785773i\) |
\(L(1)\) |
\(\approx\) |
\(0.6982148694 + 0.1635785773i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.733 + 0.680i)T \) |
| 11 | \( 1 + (0.222 + 0.974i)T \) |
| 13 | \( 1 + (-0.733 + 0.680i)T \) |
| 17 | \( 1 + (-0.0747 - 0.997i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (-0.900 + 0.433i)T \) |
| 29 | \( 1 + (-0.826 + 0.563i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + (-0.826 + 0.563i)T \) |
| 41 | \( 1 + (0.365 - 0.930i)T \) |
| 43 | \( 1 + (-0.365 - 0.930i)T \) |
| 47 | \( 1 + (0.733 - 0.680i)T \) |
| 53 | \( 1 + (0.826 + 0.563i)T \) |
| 59 | \( 1 + (0.365 + 0.930i)T \) |
| 61 | \( 1 + (-0.0747 - 0.997i)T \) |
| 67 | \( 1 + (0.5 - 0.866i)T \) |
| 71 | \( 1 + (0.900 - 0.433i)T \) |
| 73 | \( 1 + (0.955 - 0.294i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.733 + 0.680i)T \) |
| 89 | \( 1 + (-0.733 - 0.680i)T \) |
| 97 | \( 1 + (-0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.58383454020441030084827419761, −19.15125985782815901409081430951, −18.30320823293216858537866374647, −17.67490046577912926264915271263, −16.933426722921835658785398077327, −16.34786421867521736261535218447, −15.59550682213176786574732708625, −14.56585737380771705880938145784, −13.85066280942140471552513749816, −12.885242774911686124329204190906, −12.37124766095809330752259423960, −11.57618248816378381312364832802, −10.8513268229067208118662399176, −10.11255416161161918771642654027, −9.5824610697661965553152309553, −8.43442298903444261238608797613, −8.16634470306517640546668144220, −7.24899703785749627982750763755, −6.25035975421646662016805345799, −5.44189593482990859493359314392, −4.199686445232161688349861818166, −3.52750506662509326910003778289, −2.691784739607280696829997871912, −1.75394381946291026402832360118, −0.78072253023386798688695871347,
0.52579050580925854755465438734, 1.83508449838575875370245473279, 2.42473979881370800530009799385, 3.88902057707906556577798560260, 4.86101416213690687205881224963, 5.38377796206220641972214141094, 6.522218305121143158437189156795, 7.20777208979509717752751028572, 7.57922167350439443098375293840, 8.75073124264777248242737293626, 9.41860942842992714942027630691, 9.856802801348776774028208796097, 10.78132584917058434011911932845, 11.71530451540312234081764617735, 12.213003913140840755917595414857, 13.597480129215849391376450262666, 13.95443493962872919283404188074, 14.94589852358097744089090985072, 15.44072129714124464371145487304, 16.16762601483175009474088818815, 17.04025705239282713117166864099, 17.42848385733467978564832696698, 18.32458526460680105058683783647, 18.77172681315445345183482951561, 19.849164759876052407301876835979