Properties

Label 1-253-253.112-r0-0-0
Degree 11
Conductor 253253
Sign 0.5570.830i0.557 - 0.830i
Analytic cond. 1.174921.17492
Root an. cond. 1.174921.17492
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.941 − 0.336i)2-s + (−0.921 + 0.389i)3-s + (0.774 + 0.633i)4-s + (−0.696 − 0.717i)5-s + (0.998 − 0.0570i)6-s + (0.993 + 0.113i)7-s + (−0.516 − 0.856i)8-s + (0.696 − 0.717i)9-s + (0.415 + 0.909i)10-s + (−0.959 − 0.281i)12-s + (−0.198 + 0.980i)13-s + (−0.897 − 0.441i)14-s + (0.921 + 0.389i)15-s + (0.198 + 0.980i)16-s + (−0.998 + 0.0570i)17-s + (−0.897 + 0.441i)18-s + ⋯
L(s)  = 1  + (−0.941 − 0.336i)2-s + (−0.921 + 0.389i)3-s + (0.774 + 0.633i)4-s + (−0.696 − 0.717i)5-s + (0.998 − 0.0570i)6-s + (0.993 + 0.113i)7-s + (−0.516 − 0.856i)8-s + (0.696 − 0.717i)9-s + (0.415 + 0.909i)10-s + (−0.959 − 0.281i)12-s + (−0.198 + 0.980i)13-s + (−0.897 − 0.441i)14-s + (0.921 + 0.389i)15-s + (0.198 + 0.980i)16-s + (−0.998 + 0.0570i)17-s + (−0.897 + 0.441i)18-s + ⋯

Functional equation

Λ(s)=(253s/2ΓR(s)L(s)=((0.5570.830i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.557 - 0.830i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(253s/2ΓR(s)L(s)=((0.5570.830i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.557 - 0.830i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 253253    =    112311 \cdot 23
Sign: 0.5570.830i0.557 - 0.830i
Analytic conductor: 1.174921.17492
Root analytic conductor: 1.174921.17492
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ253(112,)\chi_{253} (112, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 253, (0: ), 0.5570.830i)(1,\ 253,\ (0:\ ),\ 0.557 - 0.830i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.44449399890.2368931183i0.4444939989 - 0.2368931183i
L(12)L(\frac12) \approx 0.44449399890.2368931183i0.4444939989 - 0.2368931183i
L(1)L(1) \approx 0.51822722020.1006617617i0.5182272202 - 0.1006617617i
L(1)L(1) \approx 0.51822722020.1006617617i0.5182272202 - 0.1006617617i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad11 1 1
23 1 1
good2 1+(0.9410.336i)T 1 + (-0.941 - 0.336i)T
3 1+(0.921+0.389i)T 1 + (-0.921 + 0.389i)T
5 1+(0.6960.717i)T 1 + (-0.696 - 0.717i)T
7 1+(0.993+0.113i)T 1 + (0.993 + 0.113i)T
13 1+(0.198+0.980i)T 1 + (-0.198 + 0.980i)T
17 1+(0.998+0.0570i)T 1 + (-0.998 + 0.0570i)T
19 1+(0.2540.967i)T 1 + (-0.254 - 0.967i)T
29 1+(0.2540.967i)T 1 + (0.254 - 0.967i)T
31 1+(0.9740.226i)T 1 + (0.974 - 0.226i)T
37 1+(0.9850.170i)T 1 + (0.985 - 0.170i)T
41 1+(0.985+0.170i)T 1 + (0.985 + 0.170i)T
43 1+(0.6540.755i)T 1 + (-0.654 - 0.755i)T
47 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
53 1+(0.8700.491i)T 1 + (0.870 - 0.491i)T
59 1+(0.736+0.676i)T 1 + (-0.736 + 0.676i)T
61 1+(0.08550.996i)T 1 + (0.0855 - 0.996i)T
67 1+(0.9590.281i)T 1 + (0.959 - 0.281i)T
71 1+(0.6100.791i)T 1 + (0.610 - 0.791i)T
73 1+(0.7740.633i)T 1 + (-0.774 - 0.633i)T
79 1+(0.1980.980i)T 1 + (0.198 - 0.980i)T
83 1+(0.4660.884i)T 1 + (-0.466 - 0.884i)T
89 1+(0.654+0.755i)T 1 + (0.654 + 0.755i)T
97 1+(0.4660.884i)T 1 + (0.466 - 0.884i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−26.399333510546265958101910814634, −25.05533133759419883537112214956, −24.39592423200280171654584494406, −23.476452805057712438250868548948, −22.80696920083954302691516018594, −21.61099737995682611687253060845, −20.30817276059292898452938778340, −19.42772203043109778825623345559, −18.36688840584728303868367206650, −17.916903139696807207537642472058, −17.06641794811139975894500854194, −15.971144575343834300097863875327, −15.15546959297203412086709994958, −14.19348916919861240161809621109, −12.5325459758723422168515084638, −11.4817255829233711368393205065, −10.88313308705619770309507791640, −10.116510351996162831639829959484, −8.35119535598958533718879098240, −7.681715403714577724425305116417, −6.77643834786717579569475963274, −5.74150862754467520106058469549, −4.49775980105280364683054743291, −2.52910562671814518793344617288, −1.088817445725113206897980941313, 0.67326423472921589416673848027, 2.098591271676313581345153172922, 4.08891587291468085627514561472, 4.80049815357918061374477243463, 6.38967619538620453052273165101, 7.48728331646452397612122788776, 8.619904792077548986446316914532, 9.4048959570967624686268016556, 10.72779454380605184872874299812, 11.56125530380830791674368776318, 11.93501801997421306601394229005, 13.22473056881299988249153593499, 15.12151728979594848297226728272, 15.768094340784601104358485580415, 16.806833503395067551625068004415, 17.375297458218031068717169075000, 18.28278653884481773664015350451, 19.35904937729505657592142936505, 20.30789853052355853904269663266, 21.24089403997672871287371564020, 21.807639116285941857628085587536, 23.25341354593992338463345559032, 24.20314545604607287319258792680, 24.673171474736250712590464484596, 26.4077622229093496875205575983

Graph of the ZZ-function along the critical line