L(s) = 1 | + (0.805 − 0.592i)2-s + (0.0957 − 0.995i)3-s + (0.297 − 0.954i)4-s + (−0.461 − 0.887i)5-s + (−0.512 − 0.858i)6-s + (0.740 − 0.672i)7-s + (−0.325 − 0.945i)8-s + (−0.981 − 0.190i)9-s + (−0.897 − 0.441i)10-s + (−0.986 + 0.161i)11-s + (−0.921 − 0.387i)12-s + (0.978 − 0.205i)13-s + (0.197 − 0.980i)14-s + (−0.927 + 0.374i)15-s + (−0.822 − 0.568i)16-s + (0.688 − 0.725i)17-s + ⋯ |
L(s) = 1 | + (0.805 − 0.592i)2-s + (0.0957 − 0.995i)3-s + (0.297 − 0.954i)4-s + (−0.461 − 0.887i)5-s + (−0.512 − 0.858i)6-s + (0.740 − 0.672i)7-s + (−0.325 − 0.945i)8-s + (−0.981 − 0.190i)9-s + (−0.897 − 0.441i)10-s + (−0.986 + 0.161i)11-s + (−0.921 − 0.387i)12-s + (0.978 − 0.205i)13-s + (0.197 − 0.980i)14-s + (−0.927 + 0.374i)15-s + (−0.822 − 0.568i)16-s + (0.688 − 0.725i)17-s + ⋯ |
Λ(s)=(=(2557s/2ΓR(s)L(s)(−0.246+0.969i)Λ(1−s)
Λ(s)=(=(2557s/2ΓR(s)L(s)(−0.246+0.969i)Λ(1−s)
Degree: |
1 |
Conductor: |
2557
|
Sign: |
−0.246+0.969i
|
Analytic conductor: |
11.8746 |
Root analytic conductor: |
11.8746 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2557(1061,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 2557, (0: ), −0.246+0.969i)
|
Particular Values
L(21) |
≈ |
−1.271906506−1.635667288i |
L(21) |
≈ |
−1.271906506−1.635667288i |
L(1) |
≈ |
0.6305458972−1.354346682i |
L(1) |
≈ |
0.6305458972−1.354346682i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2557 | 1 |
good | 2 | 1+(0.805−0.592i)T |
| 3 | 1+(0.0957−0.995i)T |
| 5 | 1+(−0.461−0.887i)T |
| 7 | 1+(0.740−0.672i)T |
| 11 | 1+(−0.986+0.161i)T |
| 13 | 1+(0.978−0.205i)T |
| 17 | 1+(0.688−0.725i)T |
| 19 | 1+(−0.139−0.990i)T |
| 23 | 1+(0.00737+0.999i)T |
| 29 | 1+(−0.999−0.0147i)T |
| 31 | 1+(0.854+0.519i)T |
| 37 | 1+(0.212−0.977i)T |
| 41 | 1+(−0.956+0.290i)T |
| 43 | 1+(0.997+0.0736i)T |
| 47 | 1+(−0.978−0.205i)T |
| 53 | 1+(−0.787−0.616i)T |
| 59 | 1+(−0.968+0.248i)T |
| 61 | 1+(0.699+0.714i)T |
| 67 | 1+(0.574−0.818i)T |
| 71 | 1+(−0.474−0.880i)T |
| 73 | 1+(−0.550+0.835i)T |
| 79 | 1+(0.999+0.0442i)T |
| 83 | 1+(−0.998−0.0589i)T |
| 89 | 1+(0.968−0.248i)T |
| 97 | 1+(−0.367−0.930i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−20.456111254298998609970501226685, −18.90676707110430182784775528876, −18.61678090666129486087255493261, −17.62768897292422720515387199198, −16.80413877058883185512653826396, −16.09379759351874230727529143109, −15.47688973935338545973597075138, −14.995704297342950821737740342696, −14.41623823329533446564302253441, −13.84106290575086105708868989467, −12.7921518146208174554110080833, −11.9442635789026162468206237251, −11.24051233955535958421794712160, −10.73973107048317310014743967293, −9.92729117858364988444153637393, −8.59922197983375430222498547134, −8.1971830959903912379054979122, −7.628193914173382345401263138752, −6.23576722916451579694917592142, −5.92282972543232145572176351231, −5.00345716007701344862679042149, −4.24351201249373494978925534664, −3.500358806779807816996972774779, −2.86718589344212225844152218787, −1.97146017751647439430393176030,
0.48379469348741593380875525711, 1.23008455050936982561905629287, 1.95723005399891006617786637739, 3.04862651592018851652396489620, 3.76153174309576173232471945882, 4.868697218556752824870460082046, 5.257732990243409277080446966715, 6.15752157328028667653234701456, 7.293087135488528085190933255993, 7.69830346771039845287549020593, 8.587916999312304765759918307178, 9.44099684992124895110307037130, 10.52138159851199452953829069160, 11.393698647490577795910982710399, 11.59589305952323007173050254174, 12.657341611815884992364199674, 13.14198085659723168711931247966, 13.635212869369182295234646236804, 14.30513660142289538825558575798, 15.29048097041701582604813942861, 15.876451821385419286688083661267, 16.7706055734043288395221381736, 17.74541263212694739437983710339, 18.23752301131083865059069378031, 19.12043836432022246551198087215