L(s) = 1 | + (0.945 + 0.325i)2-s + (−0.283 − 0.958i)3-s + (0.787 + 0.616i)4-s + (0.132 + 0.991i)5-s + (0.0442 − 0.999i)6-s + (0.598 − 0.801i)7-s + (0.544 + 0.839i)8-s + (−0.839 + 0.544i)9-s + (−0.197 + 0.980i)10-s + (−0.883 − 0.467i)11-s + (0.367 − 0.930i)12-s + (0.814 + 0.580i)13-s + (0.826 − 0.562i)14-s + (0.912 − 0.408i)15-s + (0.240 + 0.970i)16-s + (0.650 + 0.759i)17-s + ⋯ |
L(s) = 1 | + (0.945 + 0.325i)2-s + (−0.283 − 0.958i)3-s + (0.787 + 0.616i)4-s + (0.132 + 0.991i)5-s + (0.0442 − 0.999i)6-s + (0.598 − 0.801i)7-s + (0.544 + 0.839i)8-s + (−0.839 + 0.544i)9-s + (−0.197 + 0.980i)10-s + (−0.883 − 0.467i)11-s + (0.367 − 0.930i)12-s + (0.814 + 0.580i)13-s + (0.826 − 0.562i)14-s + (0.912 − 0.408i)15-s + (0.240 + 0.970i)16-s + (0.650 + 0.759i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2557 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.971 + 0.238i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2557 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.971 + 0.238i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(4.718230179 + 0.5712674080i\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.718230179 + 0.5712674080i\) |
\(L(1)\) |
\(\approx\) |
\(1.970001017 + 0.1172840284i\) |
\(L(1)\) |
\(\approx\) |
\(1.970001017 + 0.1172840284i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2557 | \( 1 \) |
good | 2 | \( 1 + (0.945 + 0.325i)T \) |
| 3 | \( 1 + (-0.283 - 0.958i)T \) |
| 5 | \( 1 + (0.132 + 0.991i)T \) |
| 7 | \( 1 + (0.598 - 0.801i)T \) |
| 11 | \( 1 + (-0.883 - 0.467i)T \) |
| 13 | \( 1 + (0.814 + 0.580i)T \) |
| 17 | \( 1 + (0.650 + 0.759i)T \) |
| 19 | \( 1 + (0.408 - 0.912i)T \) |
| 23 | \( 1 + (0.0221 - 0.999i)T \) |
| 29 | \( 1 + (0.999 - 0.0442i)T \) |
| 31 | \( 1 + (-0.997 + 0.0663i)T \) |
| 37 | \( 1 + (0.598 + 0.801i)T \) |
| 41 | \( 1 + (0.773 - 0.633i)T \) |
| 43 | \( 1 + (-0.219 - 0.975i)T \) |
| 47 | \( 1 + (0.580 + 0.814i)T \) |
| 53 | \( 1 + (-0.408 - 0.912i)T \) |
| 59 | \( 1 + (0.730 + 0.683i)T \) |
| 61 | \( 1 + (-0.730 - 0.683i)T \) |
| 67 | \( 1 + (0.262 + 0.964i)T \) |
| 71 | \( 1 + (0.996 - 0.0883i)T \) |
| 73 | \( 1 + (-0.984 + 0.176i)T \) |
| 79 | \( 1 + (0.132 + 0.991i)T \) |
| 83 | \( 1 + (-0.176 - 0.984i)T \) |
| 89 | \( 1 + (0.683 - 0.730i)T \) |
| 97 | \( 1 + (-0.903 + 0.428i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.56294029182376129410203644369, −18.28955589021316376400310219817, −17.924412162528285360095753877293, −16.75540245085411171488119973752, −16.03137014160405749264275287317, −15.73963882113579484140859888638, −14.97220163136789959858732547616, −14.251489011764015929917007776440, −13.46307821653934453198211351078, −12.57846889408860137651979389123, −12.105912812704921871348454664803, −11.36094377375879094027639737987, −10.69268853359572953958918527412, −9.79497500308765846714368481366, −9.310327199627664682630234602332, −8.22111288264281949827679198006, −7.57559215268774591242549549972, −5.98846449515467748530390169922, −5.599235911215280836618329868949, −5.07238210489361929192951771432, −4.40711130818921334295114597116, −3.48338327721296139620402704707, −2.70393427600069184979657934668, −1.64167101076360551392999261204, −0.725024524153775030620263648493,
0.76915448858605996596407617387, 1.8209929545045581150044339285, 2.627519108634435211852822473084, 3.38395251510428733487798614406, 4.327107915765124988871967231787, 5.30633169888534563455695188398, 6.01627661802996747413526945174, 6.704315042397323766946445757351, 7.27780655606681947540537123538, 7.96749112713045302112931275488, 8.60570521518253090973064187894, 10.30885404807166941632675633865, 10.921056844597391882508526516620, 11.28654211086542010885811668410, 12.15823543280316140195515323966, 13.07275562931914317862753822859, 13.563293120534056405944735295329, 14.20776870667217844124120701621, 14.6073166307635122026800492655, 15.67067501337644290519149946037, 16.3775317855770313126659065622, 17.16874278670034343234595304449, 17.79053195441424600064802778079, 18.50853486710979915953513654941, 19.14787026448121019787750561358