L(s) = 1 | + (0.945 + 0.325i)2-s + (−0.283 − 0.958i)3-s + (0.787 + 0.616i)4-s + (0.132 + 0.991i)5-s + (0.0442 − 0.999i)6-s + (0.598 − 0.801i)7-s + (0.544 + 0.839i)8-s + (−0.839 + 0.544i)9-s + (−0.197 + 0.980i)10-s + (−0.883 − 0.467i)11-s + (0.367 − 0.930i)12-s + (0.814 + 0.580i)13-s + (0.826 − 0.562i)14-s + (0.912 − 0.408i)15-s + (0.240 + 0.970i)16-s + (0.650 + 0.759i)17-s + ⋯ |
L(s) = 1 | + (0.945 + 0.325i)2-s + (−0.283 − 0.958i)3-s + (0.787 + 0.616i)4-s + (0.132 + 0.991i)5-s + (0.0442 − 0.999i)6-s + (0.598 − 0.801i)7-s + (0.544 + 0.839i)8-s + (−0.839 + 0.544i)9-s + (−0.197 + 0.980i)10-s + (−0.883 − 0.467i)11-s + (0.367 − 0.930i)12-s + (0.814 + 0.580i)13-s + (0.826 − 0.562i)14-s + (0.912 − 0.408i)15-s + (0.240 + 0.970i)16-s + (0.650 + 0.759i)17-s + ⋯ |
Λ(s)=(=(2557s/2ΓR(s+1)L(s)(0.971+0.238i)Λ(1−s)
Λ(s)=(=(2557s/2ΓR(s+1)L(s)(0.971+0.238i)Λ(1−s)
Degree: |
1 |
Conductor: |
2557
|
Sign: |
0.971+0.238i
|
Analytic conductor: |
274.787 |
Root analytic conductor: |
274.787 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2557(493,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 2557, (1: ), 0.971+0.238i)
|
Particular Values
L(21) |
≈ |
4.718230179+0.5712674080i |
L(21) |
≈ |
4.718230179+0.5712674080i |
L(1) |
≈ |
1.970001017+0.1172840284i |
L(1) |
≈ |
1.970001017+0.1172840284i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2557 | 1 |
good | 2 | 1+(0.945+0.325i)T |
| 3 | 1+(−0.283−0.958i)T |
| 5 | 1+(0.132+0.991i)T |
| 7 | 1+(0.598−0.801i)T |
| 11 | 1+(−0.883−0.467i)T |
| 13 | 1+(0.814+0.580i)T |
| 17 | 1+(0.650+0.759i)T |
| 19 | 1+(0.408−0.912i)T |
| 23 | 1+(0.0221−0.999i)T |
| 29 | 1+(0.999−0.0442i)T |
| 31 | 1+(−0.997+0.0663i)T |
| 37 | 1+(0.598+0.801i)T |
| 41 | 1+(0.773−0.633i)T |
| 43 | 1+(−0.219−0.975i)T |
| 47 | 1+(0.580+0.814i)T |
| 53 | 1+(−0.408−0.912i)T |
| 59 | 1+(0.730+0.683i)T |
| 61 | 1+(−0.730−0.683i)T |
| 67 | 1+(0.262+0.964i)T |
| 71 | 1+(0.996−0.0883i)T |
| 73 | 1+(−0.984+0.176i)T |
| 79 | 1+(0.132+0.991i)T |
| 83 | 1+(−0.176−0.984i)T |
| 89 | 1+(0.683−0.730i)T |
| 97 | 1+(−0.903+0.428i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.56294029182376129410203644369, −18.28955589021316376400310219817, −17.924412162528285360095753877293, −16.75540245085411171488119973752, −16.03137014160405749264275287317, −15.73963882113579484140859888638, −14.97220163136789959858732547616, −14.251489011764015929917007776440, −13.46307821653934453198211351078, −12.57846889408860137651979389123, −12.105912812704921871348454664803, −11.36094377375879094027639737987, −10.69268853359572953958918527412, −9.79497500308765846714368481366, −9.310327199627664682630234602332, −8.22111288264281949827679198006, −7.57559215268774591242549549972, −5.98846449515467748530390169922, −5.599235911215280836618329868949, −5.07238210489361929192951771432, −4.40711130818921334295114597116, −3.48338327721296139620402704707, −2.70393427600069184979657934668, −1.64167101076360551392999261204, −0.725024524153775030620263648493,
0.76915448858605996596407617387, 1.8209929545045581150044339285, 2.627519108634435211852822473084, 3.38395251510428733487798614406, 4.327107915765124988871967231787, 5.30633169888534563455695188398, 6.01627661802996747413526945174, 6.704315042397323766946445757351, 7.27780655606681947540537123538, 7.96749112713045302112931275488, 8.60570521518253090973064187894, 10.30885404807166941632675633865, 10.921056844597391882508526516620, 11.28654211086542010885811668410, 12.15823543280316140195515323966, 13.07275562931914317862753822859, 13.563293120534056405944735295329, 14.20776870667217844124120701621, 14.6073166307635122026800492655, 15.67067501337644290519149946037, 16.3775317855770313126659065622, 17.16874278670034343234595304449, 17.79053195441424600064802778079, 18.50853486710979915953513654941, 19.14787026448121019787750561358