Dirichlet series
L(s) = 1 | + (−0.337 − 0.941i)2-s + (−0.637 − 0.770i)3-s + (−0.772 + 0.635i)4-s + (−0.741 + 0.670i)5-s + (−0.510 + 0.859i)6-s + (−0.570 − 0.821i)7-s + (0.858 + 0.512i)8-s + (−0.188 + 0.982i)9-s + (0.881 + 0.472i)10-s + (0.999 − 0.0393i)11-s + (0.981 + 0.190i)12-s + (0.867 + 0.497i)13-s + (−0.580 + 0.814i)14-s + (0.989 + 0.144i)15-s + (0.192 − 0.981i)16-s + (0.947 + 0.321i)17-s + ⋯ |
L(s) = 1 | + (−0.337 − 0.941i)2-s + (−0.637 − 0.770i)3-s + (−0.772 + 0.635i)4-s + (−0.741 + 0.670i)5-s + (−0.510 + 0.859i)6-s + (−0.570 − 0.821i)7-s + (0.858 + 0.512i)8-s + (−0.188 + 0.982i)9-s + (0.881 + 0.472i)10-s + (0.999 − 0.0393i)11-s + (0.981 + 0.190i)12-s + (0.867 + 0.497i)13-s + (−0.580 + 0.814i)14-s + (0.989 + 0.144i)15-s + (0.192 − 0.981i)16-s + (0.947 + 0.321i)17-s + ⋯ |
Functional equation
Invariants
Degree: | \(1\) |
Conductor: | \(2557\) |
Sign: | $-0.297 - 0.954i$ |
Analytic conductor: | \(274.787\) |
Root analytic conductor: | \(274.787\) |
Motivic weight: | \(0\) |
Rational: | no |
Arithmetic: | yes |
Character: | $\chi_{2557} (78, \cdot )$ |
Primitive: | yes |
Self-dual: | no |
Analytic rank: | \(0\) |
Selberg data: | \((1,\ 2557,\ (1:\ ),\ -0.297 - 0.954i)\) |
Particular Values
\(L(\frac{1}{2})\) | \(\approx\) | \(0.8044086381 - 1.093077132i\) |
\(L(\frac12)\) | \(\approx\) | \(0.8044086381 - 1.093077132i\) |
\(L(1)\) | \(\approx\) | \(0.5873803487 - 0.4081111737i\) |
\(L(1)\) | \(\approx\) | \(0.5873803487 - 0.4081111737i\) |
Euler product
$p$ | $F_p(T)$ | |
---|---|---|
bad | 2557 | \( 1 \) |
good | 2 | \( 1 + (-0.337 - 0.941i)T \) |
3 | \( 1 + (-0.637 - 0.770i)T \) | |
5 | \( 1 + (-0.741 + 0.670i)T \) | |
7 | \( 1 + (-0.570 - 0.821i)T \) | |
11 | \( 1 + (0.999 - 0.0393i)T \) | |
13 | \( 1 + (0.867 + 0.497i)T \) | |
17 | \( 1 + (0.947 + 0.321i)T \) | |
19 | \( 1 + (0.202 - 0.979i)T \) | |
23 | \( 1 + (-0.578 + 0.815i)T \) | |
29 | \( 1 + (0.330 - 0.943i)T \) | |
31 | \( 1 + (0.994 - 0.105i)T \) | |
37 | \( 1 + (0.817 - 0.576i)T \) | |
41 | \( 1 + (0.560 - 0.828i)T \) | |
43 | \( 1 + (0.916 - 0.399i)T \) | |
47 | \( 1 + (-0.497 - 0.867i)T \) | |
53 | \( 1 + (0.525 + 0.850i)T \) | |
59 | \( 1 + (-0.529 + 0.848i)T \) | |
61 | \( 1 + (-0.787 + 0.616i)T \) | |
67 | \( 1 + (0.994 + 0.100i)T \) | |
71 | \( 1 + (0.478 - 0.878i)T \) | |
73 | \( 1 + (0.541 + 0.840i)T \) | |
79 | \( 1 + (0.467 - 0.883i)T \) | |
83 | \( 1 + (0.295 - 0.955i)T \) | |
89 | \( 1 + (0.882 - 0.469i)T \) | |
97 | \( 1 + (0.0515 - 0.998i)T \) | |
show more | ||
show less |
Imaginary part of the first few zeros on the critical line
−19.318561408715562783555390671401, −18.51626709653053259590660682462, −17.97912388872301325495531069088, −16.98991505592642800623287928890, −16.39309632664700342020730363920, −16.09775013320268884716426141825, −15.445390913506892141269533132244, −14.70551430202397174939826498670, −14.08983438059346401562160408842, −12.7521000563024716639022655803, −12.333532237971758734732745673802, −11.53878688407728663623694648879, −10.647722665717380994782329585327, −9.63835991767327475893467354308, −9.390054399849074891214209333276, −8.36231895438381776389557713763, −8.01826286557689454791960472633, −6.62384191603226914003760670707, −6.16472871895847928520286539656, −5.43598285502016130934306280376, −4.685993400922121703083313144494, −3.88836768186830788154181758096, −3.20614587153284766505996563952, −1.24813576066025755995709667785, −0.65520208909955017303887440372, 0.59449746557562890739644874166, 0.99198484840582949565740950956, 2.11873145322191264144981261101, 3.11698221735581985385223126793, 3.91032981573309891985773147062, 4.41877371699100985806416318771, 5.85703962798614539929317739654, 6.571961612806886154235871642334, 7.40163970392398614794044998945, 7.85763236486868591710759374557, 8.87879545046304527582977118947, 9.7715661260712343251862999359, 10.60602625257569761605997429860, 11.1027913360583934575365194960, 11.907195112497814734037969683598, 12.1247635149052702832679091894, 13.304269599456432358860675376228, 13.72790313993820654866594192877, 14.38028002378510694255540667763, 15.7090231758426002854030595912, 16.40587721085373372020223353146, 17.16002229995333477480257079183, 17.64660331844894337718649335087, 18.56686550398657649004035841405, 19.030156062123462639269197278