L(s) = 1 | + 5-s + 7-s − 11-s − i·19-s − i·23-s + 25-s + i·29-s + 31-s + 35-s + 37-s − 41-s − 43-s + i·47-s + 49-s + 53-s + ⋯ |
L(s) = 1 | + 5-s + 7-s − 11-s − i·19-s − i·23-s + 25-s + i·29-s + 31-s + 35-s + 37-s − 41-s − 43-s + i·47-s + 49-s + 53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2652 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.817 - 0.576i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2652 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.817 - 0.576i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.077325434 - 0.9753897482i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.077325434 - 0.9753897482i\) |
\(L(1)\) |
\(\approx\) |
\(1.419023167 - 0.1044389049i\) |
\(L(1)\) |
\(\approx\) |
\(1.419023167 - 0.1044389049i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
| 17 | \( 1 \) |
good | 5 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 \) |
| 29 | \( 1 \) |
| 31 | \( 1 \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 \) |
| 43 | \( 1 \) |
| 47 | \( 1 \) |
| 53 | \( 1 \) |
| 59 | \( 1 \) |
| 61 | \( 1 \) |
| 67 | \( 1 \) |
| 71 | \( 1 - iT \) |
| 73 | \( 1 \) |
| 79 | \( 1 \) |
| 83 | \( 1 \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.06628124778833041194069766910, −18.20100355742254896590927895820, −18.05159929479760485630625582068, −17.032124995857403102619128582015, −16.68924364869450604307074256716, −15.46970919461218609912385221975, −15.04593610460088530518310941344, −14.09042101633933530986709620524, −13.59690028320021256724456068464, −12.98422909567216806413507866090, −11.95385964878357504729290914003, −11.37875636869000991443021703775, −10.29974199217380175428004172490, −10.09724431551567492912727906742, −9.078612435732969820644683855265, −8.17533375555306330492883726612, −7.734479251923123947204970359893, −6.66617333141309780906204851451, −5.775834644468571528090022717061, −5.25452256837472487874686609911, −4.49678196410676019705481123618, −3.39201538091725265262349993431, −2.3607675132172796989856448361, −1.78625140591160202577216932942, −0.82975383726068013242808366206,
0.59604421040189945626982118941, 1.54173594423882186746546279586, 2.41708837262164797093758938372, 2.99738654077705976813935277490, 4.483520945731498206043359365095, 4.957468603207158159531910592367, 5.68027699916467590552363449423, 6.58402010919628939682821142314, 7.33914600997890928642900872942, 8.3269472695239181182872027387, 8.772617316735303994196935575551, 9.80177077593696269958540128631, 10.452148329940746585188898528312, 11.04104403041072449403684776798, 11.876622981609539590899196087952, 12.84863392721694465072679799273, 13.3717988401198282822783735328, 14.09470222571040427005868407060, 14.77238842847056209788693699857, 15.4310646951012477505647543336, 16.38190443444754104593581355994, 17.04026291405514442826242689063, 17.853328319119272544826586945853, 18.15681263052963023656045280019, 18.86969778321953187371429504729