Properties

Label 1-2652-2652.395-r1-0-0
Degree $1$
Conductor $2652$
Sign $0.817 - 0.576i$
Analytic cond. $284.996$
Root an. cond. $284.996$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s − 11-s i·19-s i·23-s + 25-s + i·29-s + 31-s + 35-s + 37-s − 41-s − 43-s + i·47-s + 49-s + 53-s + ⋯
L(s)  = 1  + 5-s + 7-s − 11-s i·19-s i·23-s + 25-s + i·29-s + 31-s + 35-s + 37-s − 41-s − 43-s + i·47-s + 49-s + 53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2652 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.817 - 0.576i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2652 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.817 - 0.576i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(2652\)    =    \(2^{2} \cdot 3 \cdot 13 \cdot 17\)
Sign: $0.817 - 0.576i$
Analytic conductor: \(284.996\)
Root analytic conductor: \(284.996\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2652} (395, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 2652,\ (1:\ ),\ 0.817 - 0.576i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(3.077325434 - 0.9753897482i\)
\(L(\frac12)\) \(\approx\) \(3.077325434 - 0.9753897482i\)
\(L(1)\) \(\approx\) \(1.419023167 - 0.1044389049i\)
\(L(1)\) \(\approx\) \(1.419023167 - 0.1044389049i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 \)
17 \( 1 \)
good5 \( 1 \)
7 \( 1 \)
11 \( 1 \)
19 \( 1 + T \)
23 \( 1 \)
29 \( 1 \)
31 \( 1 \)
37 \( 1 - T \)
41 \( 1 \)
43 \( 1 \)
47 \( 1 \)
53 \( 1 \)
59 \( 1 \)
61 \( 1 \)
67 \( 1 \)
71 \( 1 - iT \)
73 \( 1 \)
79 \( 1 \)
83 \( 1 \)
89 \( 1 - iT \)
97 \( 1 \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.06628124778833041194069766910, −18.20100355742254896590927895820, −18.05159929479760485630625582068, −17.032124995857403102619128582015, −16.68924364869450604307074256716, −15.46970919461218609912385221975, −15.04593610460088530518310941344, −14.09042101633933530986709620524, −13.59690028320021256724456068464, −12.98422909567216806413507866090, −11.95385964878357504729290914003, −11.37875636869000991443021703775, −10.29974199217380175428004172490, −10.09724431551567492912727906742, −9.078612435732969820644683855265, −8.17533375555306330492883726612, −7.734479251923123947204970359893, −6.66617333141309780906204851451, −5.775834644468571528090022717061, −5.25452256837472487874686609911, −4.49678196410676019705481123618, −3.39201538091725265262349993431, −2.3607675132172796989856448361, −1.78625140591160202577216932942, −0.82975383726068013242808366206, 0.59604421040189945626982118941, 1.54173594423882186746546279586, 2.41708837262164797093758938372, 2.99738654077705976813935277490, 4.483520945731498206043359365095, 4.957468603207158159531910592367, 5.68027699916467590552363449423, 6.58402010919628939682821142314, 7.33914600997890928642900872942, 8.3269472695239181182872027387, 8.772617316735303994196935575551, 9.80177077593696269958540128631, 10.452148329940746585188898528312, 11.04104403041072449403684776798, 11.876622981609539590899196087952, 12.84863392721694465072679799273, 13.3717988401198282822783735328, 14.09470222571040427005868407060, 14.77238842847056209788693699857, 15.4310646951012477505647543336, 16.38190443444754104593581355994, 17.04026291405514442826242689063, 17.853328319119272544826586945853, 18.15681263052963023656045280019, 18.86969778321953187371429504729

Graph of the $Z$-function along the critical line