Properties

Label 1-2652-2652.887-r1-0-0
Degree 11
Conductor 26522652
Sign 0.552+0.833i-0.552 + 0.833i
Analytic cond. 284.996284.996
Root an. cond. 284.996284.996
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.382 − 0.923i)5-s + (0.608 − 0.793i)7-s + (0.130 − 0.991i)11-s + (0.965 + 0.258i)19-s + (−0.130 + 0.991i)23-s + (−0.707 − 0.707i)25-s + (−0.608 − 0.793i)29-s + (0.923 + 0.382i)31-s + (−0.5 − 0.866i)35-s + (−0.793 + 0.608i)37-s + (−0.991 − 0.130i)41-s + (−0.258 + 0.965i)43-s i·47-s + (−0.258 − 0.965i)49-s + (−0.707 + 0.707i)53-s + ⋯
L(s)  = 1  + (0.382 − 0.923i)5-s + (0.608 − 0.793i)7-s + (0.130 − 0.991i)11-s + (0.965 + 0.258i)19-s + (−0.130 + 0.991i)23-s + (−0.707 − 0.707i)25-s + (−0.608 − 0.793i)29-s + (0.923 + 0.382i)31-s + (−0.5 − 0.866i)35-s + (−0.793 + 0.608i)37-s + (−0.991 − 0.130i)41-s + (−0.258 + 0.965i)43-s i·47-s + (−0.258 − 0.965i)49-s + (−0.707 + 0.707i)53-s + ⋯

Functional equation

Λ(s)=(2652s/2ΓR(s+1)L(s)=((0.552+0.833i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2652 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.552 + 0.833i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(2652s/2ΓR(s+1)L(s)=((0.552+0.833i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2652 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.552 + 0.833i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 26522652    =    22313172^{2} \cdot 3 \cdot 13 \cdot 17
Sign: 0.552+0.833i-0.552 + 0.833i
Analytic conductor: 284.996284.996
Root analytic conductor: 284.996284.996
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ2652(887,)\chi_{2652} (887, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 2652, (1: ), 0.552+0.833i)(1,\ 2652,\ (1:\ ),\ -0.552 + 0.833i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.067498908980.1257215021i-0.06749890898 - 0.1257215021i
L(12)L(\frac12) \approx 0.067498908980.1257215021i-0.06749890898 - 0.1257215021i
L(1)L(1) \approx 1.0196244780.3208174236i1.019624478 - 0.3208174236i
L(1)L(1) \approx 1.0196244780.3208174236i1.019624478 - 0.3208174236i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
13 1 1
17 1 1
good5 1+(0.3820.923i)T 1 + (0.382 - 0.923i)T
7 1+(0.6080.793i)T 1 + (0.608 - 0.793i)T
11 1+(0.1300.991i)T 1 + (0.130 - 0.991i)T
19 1+(0.965+0.258i)T 1 + (0.965 + 0.258i)T
23 1+(0.130+0.991i)T 1 + (-0.130 + 0.991i)T
29 1+(0.6080.793i)T 1 + (-0.608 - 0.793i)T
31 1+(0.923+0.382i)T 1 + (0.923 + 0.382i)T
37 1+(0.793+0.608i)T 1 + (-0.793 + 0.608i)T
41 1+(0.9910.130i)T 1 + (-0.991 - 0.130i)T
43 1+(0.258+0.965i)T 1 + (-0.258 + 0.965i)T
47 1iT 1 - iT
53 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
59 1+(0.258+0.965i)T 1 + (-0.258 + 0.965i)T
61 1+(0.6080.793i)T 1 + (0.608 - 0.793i)T
67 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
71 1+(0.1300.991i)T 1 + (-0.130 - 0.991i)T
73 1+(0.382+0.923i)T 1 + (-0.382 + 0.923i)T
79 1+(0.9230.382i)T 1 + (0.923 - 0.382i)T
83 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
89 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
97 1+(0.991+0.130i)T 1 + (-0.991 + 0.130i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−19.538400666400233974168769735016, −18.66727257557683212890490267638, −18.24812890107866126813846536609, −17.65653560845930217957794099576, −16.97840921427742046041222452924, −15.89846784325335273437151804836, −15.22512081585649483407992160729, −14.69810728349784531577491075047, −14.084258093614271759845302315218, −13.28695414215505750790571966357, −12.290490981611573546673162093, −11.79824352674957445357632499063, −10.981638940274411894889259981785, −10.23396084202189667995628229347, −9.572970773523854588867426706486, −8.77713497340459432521054367984, −7.91780239374519707077293171637, −7.06310299307821733241496120984, −6.53966000585706664376794515410, −5.47912912159124081090922671227, −4.978552860608855066834405809552, −3.88250841398502188837128285249, −2.93237821972940931619783790792, −2.17608410588366243346952101095, −1.51747352754382648648584110099, 0.02132765666336723807259592743, 1.18471022775783140802013263547, 1.46758179964894223265686522250, 2.873896216989717586948307504197, 3.76447645199973913666675628127, 4.5693748509983867588752228046, 5.33956359307244831079102709227, 5.97509759509829754134291756908, 6.97824574707686378679981285861, 7.96484886194575321882776157750, 8.312313873147049571946181187340, 9.34352860973675710806568620767, 9.89113997310923563009006078264, 10.80360593732178219806418737852, 11.5795232310524162161181529484, 12.11531155635881201379714502828, 13.222948911578890749503478950981, 13.71400962598537740519011788716, 14.112585963690380406008437380910, 15.21409899211111797010574835889, 16.033759098767343645597348139728, 16.59182376303766583224571881852, 17.33223669602695794695128276037, 17.71234688860321519777155780920, 18.73964294869320440721693961890

Graph of the ZZ-function along the critical line