L(s) = 1 | + (0.382 − 0.923i)5-s + (0.608 − 0.793i)7-s + (0.130 − 0.991i)11-s + (0.965 + 0.258i)19-s + (−0.130 + 0.991i)23-s + (−0.707 − 0.707i)25-s + (−0.608 − 0.793i)29-s + (0.923 + 0.382i)31-s + (−0.5 − 0.866i)35-s + (−0.793 + 0.608i)37-s + (−0.991 − 0.130i)41-s + (−0.258 + 0.965i)43-s − i·47-s + (−0.258 − 0.965i)49-s + (−0.707 + 0.707i)53-s + ⋯ |
L(s) = 1 | + (0.382 − 0.923i)5-s + (0.608 − 0.793i)7-s + (0.130 − 0.991i)11-s + (0.965 + 0.258i)19-s + (−0.130 + 0.991i)23-s + (−0.707 − 0.707i)25-s + (−0.608 − 0.793i)29-s + (0.923 + 0.382i)31-s + (−0.5 − 0.866i)35-s + (−0.793 + 0.608i)37-s + (−0.991 − 0.130i)41-s + (−0.258 + 0.965i)43-s − i·47-s + (−0.258 − 0.965i)49-s + (−0.707 + 0.707i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2652 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.552 + 0.833i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2652 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.552 + 0.833i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.06749890898 - 0.1257215021i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.06749890898 - 0.1257215021i\) |
\(L(1)\) |
\(\approx\) |
\(1.019624478 - 0.3208174236i\) |
\(L(1)\) |
\(\approx\) |
\(1.019624478 - 0.3208174236i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
| 17 | \( 1 \) |
good | 5 | \( 1 + (0.382 - 0.923i)T \) |
| 7 | \( 1 + (0.608 - 0.793i)T \) |
| 11 | \( 1 + (0.130 - 0.991i)T \) |
| 19 | \( 1 + (0.965 + 0.258i)T \) |
| 23 | \( 1 + (-0.130 + 0.991i)T \) |
| 29 | \( 1 + (-0.608 - 0.793i)T \) |
| 31 | \( 1 + (0.923 + 0.382i)T \) |
| 37 | \( 1 + (-0.793 + 0.608i)T \) |
| 41 | \( 1 + (-0.991 - 0.130i)T \) |
| 43 | \( 1 + (-0.258 + 0.965i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (-0.707 + 0.707i)T \) |
| 59 | \( 1 + (-0.258 + 0.965i)T \) |
| 61 | \( 1 + (0.608 - 0.793i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.130 - 0.991i)T \) |
| 73 | \( 1 + (-0.382 + 0.923i)T \) |
| 79 | \( 1 + (0.923 - 0.382i)T \) |
| 83 | \( 1 + (-0.707 + 0.707i)T \) |
| 89 | \( 1 + (-0.866 - 0.5i)T \) |
| 97 | \( 1 + (-0.991 + 0.130i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.538400666400233974168769735016, −18.66727257557683212890490267638, −18.24812890107866126813846536609, −17.65653560845930217957794099576, −16.97840921427742046041222452924, −15.89846784325335273437151804836, −15.22512081585649483407992160729, −14.69810728349784531577491075047, −14.084258093614271759845302315218, −13.28695414215505750790571966357, −12.290490981611573546673162093, −11.79824352674957445357632499063, −10.981638940274411894889259981785, −10.23396084202189667995628229347, −9.572970773523854588867426706486, −8.77713497340459432521054367984, −7.91780239374519707077293171637, −7.06310299307821733241496120984, −6.53966000585706664376794515410, −5.47912912159124081090922671227, −4.978552860608855066834405809552, −3.88250841398502188837128285249, −2.93237821972940931619783790792, −2.17608410588366243346952101095, −1.51747352754382648648584110099,
0.02132765666336723807259592743, 1.18471022775783140802013263547, 1.46758179964894223265686522250, 2.873896216989717586948307504197, 3.76447645199973913666675628127, 4.5693748509983867588752228046, 5.33956359307244831079102709227, 5.97509759509829754134291756908, 6.97824574707686378679981285861, 7.96484886194575321882776157750, 8.312313873147049571946181187340, 9.34352860973675710806568620767, 9.89113997310923563009006078264, 10.80360593732178219806418737852, 11.5795232310524162161181529484, 12.11531155635881201379714502828, 13.222948911578890749503478950981, 13.71400962598537740519011788716, 14.112585963690380406008437380910, 15.21409899211111797010574835889, 16.033759098767343645597348139728, 16.59182376303766583224571881852, 17.33223669602695794695128276037, 17.71234688860321519777155780920, 18.73964294869320440721693961890