L(s) = 1 | + (0.382 − 0.923i)5-s + (0.608 − 0.793i)7-s + (0.130 − 0.991i)11-s + (0.965 + 0.258i)19-s + (−0.130 + 0.991i)23-s + (−0.707 − 0.707i)25-s + (−0.608 − 0.793i)29-s + (0.923 + 0.382i)31-s + (−0.5 − 0.866i)35-s + (−0.793 + 0.608i)37-s + (−0.991 − 0.130i)41-s + (−0.258 + 0.965i)43-s − i·47-s + (−0.258 − 0.965i)49-s + (−0.707 + 0.707i)53-s + ⋯ |
L(s) = 1 | + (0.382 − 0.923i)5-s + (0.608 − 0.793i)7-s + (0.130 − 0.991i)11-s + (0.965 + 0.258i)19-s + (−0.130 + 0.991i)23-s + (−0.707 − 0.707i)25-s + (−0.608 − 0.793i)29-s + (0.923 + 0.382i)31-s + (−0.5 − 0.866i)35-s + (−0.793 + 0.608i)37-s + (−0.991 − 0.130i)41-s + (−0.258 + 0.965i)43-s − i·47-s + (−0.258 − 0.965i)49-s + (−0.707 + 0.707i)53-s + ⋯ |
Λ(s)=(=(2652s/2ΓR(s+1)L(s)(−0.552+0.833i)Λ(1−s)
Λ(s)=(=(2652s/2ΓR(s+1)L(s)(−0.552+0.833i)Λ(1−s)
Degree: |
1 |
Conductor: |
2652
= 22⋅3⋅13⋅17
|
Sign: |
−0.552+0.833i
|
Analytic conductor: |
284.996 |
Root analytic conductor: |
284.996 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2652(887,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 2652, (1: ), −0.552+0.833i)
|
Particular Values
L(21) |
≈ |
−0.06749890898−0.1257215021i |
L(21) |
≈ |
−0.06749890898−0.1257215021i |
L(1) |
≈ |
1.019624478−0.3208174236i |
L(1) |
≈ |
1.019624478−0.3208174236i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1 |
| 17 | 1 |
good | 5 | 1+(0.382−0.923i)T |
| 7 | 1+(0.608−0.793i)T |
| 11 | 1+(0.130−0.991i)T |
| 19 | 1+(0.965+0.258i)T |
| 23 | 1+(−0.130+0.991i)T |
| 29 | 1+(−0.608−0.793i)T |
| 31 | 1+(0.923+0.382i)T |
| 37 | 1+(−0.793+0.608i)T |
| 41 | 1+(−0.991−0.130i)T |
| 43 | 1+(−0.258+0.965i)T |
| 47 | 1−iT |
| 53 | 1+(−0.707+0.707i)T |
| 59 | 1+(−0.258+0.965i)T |
| 61 | 1+(0.608−0.793i)T |
| 67 | 1+(−0.5+0.866i)T |
| 71 | 1+(−0.130−0.991i)T |
| 73 | 1+(−0.382+0.923i)T |
| 79 | 1+(0.923−0.382i)T |
| 83 | 1+(−0.707+0.707i)T |
| 89 | 1+(−0.866−0.5i)T |
| 97 | 1+(−0.991+0.130i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.538400666400233974168769735016, −18.66727257557683212890490267638, −18.24812890107866126813846536609, −17.65653560845930217957794099576, −16.97840921427742046041222452924, −15.89846784325335273437151804836, −15.22512081585649483407992160729, −14.69810728349784531577491075047, −14.084258093614271759845302315218, −13.28695414215505750790571966357, −12.290490981611573546673162093, −11.79824352674957445357632499063, −10.981638940274411894889259981785, −10.23396084202189667995628229347, −9.572970773523854588867426706486, −8.77713497340459432521054367984, −7.91780239374519707077293171637, −7.06310299307821733241496120984, −6.53966000585706664376794515410, −5.47912912159124081090922671227, −4.978552860608855066834405809552, −3.88250841398502188837128285249, −2.93237821972940931619783790792, −2.17608410588366243346952101095, −1.51747352754382648648584110099,
0.02132765666336723807259592743, 1.18471022775783140802013263547, 1.46758179964894223265686522250, 2.873896216989717586948307504197, 3.76447645199973913666675628127, 4.5693748509983867588752228046, 5.33956359307244831079102709227, 5.97509759509829754134291756908, 6.97824574707686378679981285861, 7.96484886194575321882776157750, 8.312313873147049571946181187340, 9.34352860973675710806568620767, 9.89113997310923563009006078264, 10.80360593732178219806418737852, 11.5795232310524162161181529484, 12.11531155635881201379714502828, 13.222948911578890749503478950981, 13.71400962598537740519011788716, 14.112585963690380406008437380910, 15.21409899211111797010574835889, 16.033759098767343645597348139728, 16.59182376303766583224571881852, 17.33223669602695794695128276037, 17.71234688860321519777155780920, 18.73964294869320440721693961890