L(s) = 1 | + (−0.553 − 0.832i)2-s + (−0.523 − 0.851i)3-s + (−0.386 + 0.922i)4-s + (−0.419 + 0.907i)6-s + (−0.915 + 0.403i)7-s + (0.982 − 0.188i)8-s + (−0.451 + 0.892i)9-s + (0.563 − 0.826i)11-s + (0.988 − 0.153i)12-s + (−0.353 − 0.935i)13-s + (0.842 + 0.538i)14-s + (−0.700 − 0.713i)16-s + (−0.933 + 0.359i)17-s + (0.992 − 0.118i)18-s + (0.217 + 0.976i)19-s + ⋯ |
L(s) = 1 | + (−0.553 − 0.832i)2-s + (−0.523 − 0.851i)3-s + (−0.386 + 0.922i)4-s + (−0.419 + 0.907i)6-s + (−0.915 + 0.403i)7-s + (0.982 − 0.188i)8-s + (−0.451 + 0.892i)9-s + (0.563 − 0.826i)11-s + (0.988 − 0.153i)12-s + (−0.353 − 0.935i)13-s + (0.842 + 0.538i)14-s + (−0.700 − 0.713i)16-s + (−0.933 + 0.359i)17-s + (0.992 − 0.118i)18-s + (0.217 + 0.976i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2675 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.623 - 0.781i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2675 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.623 - 0.781i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4267894595 - 0.2054848712i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4267894595 - 0.2054848712i\) |
\(L(1)\) |
\(\approx\) |
\(0.4269796785 - 0.2927996891i\) |
\(L(1)\) |
\(\approx\) |
\(0.4269796785 - 0.2927996891i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 107 | \( 1 \) |
good | 2 | \( 1 + (-0.553 - 0.832i)T \) |
| 3 | \( 1 + (-0.523 - 0.851i)T \) |
| 7 | \( 1 + (-0.915 + 0.403i)T \) |
| 11 | \( 1 + (0.563 - 0.826i)T \) |
| 13 | \( 1 + (-0.353 - 0.935i)T \) |
| 17 | \( 1 + (-0.933 + 0.359i)T \) |
| 19 | \( 1 + (0.217 + 0.976i)T \) |
| 23 | \( 1 + (-0.772 - 0.634i)T \) |
| 29 | \( 1 + (0.997 + 0.0710i)T \) |
| 31 | \( 1 + (0.472 - 0.881i)T \) |
| 37 | \( 1 + (0.949 + 0.314i)T \) |
| 41 | \( 1 + (-0.513 - 0.858i)T \) |
| 43 | \( 1 + (-0.533 + 0.845i)T \) |
| 47 | \( 1 + (-0.919 + 0.392i)T \) |
| 53 | \( 1 + (-0.620 - 0.783i)T \) |
| 59 | \( 1 + (0.848 + 0.528i)T \) |
| 61 | \( 1 + (0.503 + 0.864i)T \) |
| 67 | \( 1 + (-0.683 - 0.729i)T \) |
| 71 | \( 1 + (-0.0769 - 0.997i)T \) |
| 73 | \( 1 + (-0.297 + 0.954i)T \) |
| 79 | \( 1 + (-0.0177 - 0.999i)T \) |
| 83 | \( 1 + (-0.910 + 0.413i)T \) |
| 89 | \( 1 + (-0.872 - 0.487i)T \) |
| 97 | \( 1 + (0.867 - 0.498i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.34359399733334801289206804550, −18.187033832616679313266536523182, −17.62350935272501605606306041320, −17.074760312271598778547938473937, −16.36720470885480249517288583371, −15.79006070561424633675456948745, −15.34120832163343093219070049859, −14.40968474450328914273006745082, −13.822912205287980696908371546006, −12.91551908401201607203283825634, −11.82354364126824128905102832796, −11.27230717360322166771115521193, −10.212359887255533601147440263528, −9.78308425083398135933482578576, −9.24131153913403007724373260472, −8.549799411682723107886240855907, −7.26679372494661255243886834735, −6.67026940014819943291981677535, −6.30571004616402026266728520669, −5.09816938916196348676691795152, −4.54118351728158366670019491616, −3.8802316471381594194773485259, −2.62292462982480686114017439753, −1.351941747264584257317277402238, −0.2332351421002541607287586750,
0.42964944174438042222393334399, 1.30007007660324971257150880733, 2.32482123615361360883001100622, 2.95326938531653997043068084212, 3.854284110285990896095952166715, 4.908130570401207982384748362518, 6.08236281207429612733854465920, 6.39176094851925996410615305403, 7.4975737240118686649319342603, 8.27948675083259607343308685557, 8.734237646607416014975881689395, 9.91474642745277669698475582941, 10.30031795399715139664122765533, 11.31344777700270320637470896759, 11.82913380910544661892505418184, 12.53386697901714354440899644870, 13.07014342040723657162392934650, 13.673096652225812648749123544024, 14.60929478950147317875163812317, 15.848381929160472750566187440195, 16.45760949258597768710043206794, 17.05444903356206755907797216478, 17.86316465736268987755224149294, 18.350100215083095304410209090145, 19.08512440379817810322584711911