L(s) = 1 | + (−0.553 − 0.832i)2-s + (−0.523 − 0.851i)3-s + (−0.386 + 0.922i)4-s + (−0.419 + 0.907i)6-s + (−0.915 + 0.403i)7-s + (0.982 − 0.188i)8-s + (−0.451 + 0.892i)9-s + (0.563 − 0.826i)11-s + (0.988 − 0.153i)12-s + (−0.353 − 0.935i)13-s + (0.842 + 0.538i)14-s + (−0.700 − 0.713i)16-s + (−0.933 + 0.359i)17-s + (0.992 − 0.118i)18-s + (0.217 + 0.976i)19-s + ⋯ |
L(s) = 1 | + (−0.553 − 0.832i)2-s + (−0.523 − 0.851i)3-s + (−0.386 + 0.922i)4-s + (−0.419 + 0.907i)6-s + (−0.915 + 0.403i)7-s + (0.982 − 0.188i)8-s + (−0.451 + 0.892i)9-s + (0.563 − 0.826i)11-s + (0.988 − 0.153i)12-s + (−0.353 − 0.935i)13-s + (0.842 + 0.538i)14-s + (−0.700 − 0.713i)16-s + (−0.933 + 0.359i)17-s + (0.992 − 0.118i)18-s + (0.217 + 0.976i)19-s + ⋯ |
Λ(s)=(=(2675s/2ΓR(s+1)L(s)(0.623−0.781i)Λ(1−s)
Λ(s)=(=(2675s/2ΓR(s+1)L(s)(0.623−0.781i)Λ(1−s)
Degree: |
1 |
Conductor: |
2675
= 52⋅107
|
Sign: |
0.623−0.781i
|
Analytic conductor: |
287.468 |
Root analytic conductor: |
287.468 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2675(2504,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 2675, (1: ), 0.623−0.781i)
|
Particular Values
L(21) |
≈ |
0.4267894595−0.2054848712i |
L(21) |
≈ |
0.4267894595−0.2054848712i |
L(1) |
≈ |
0.4269796785−0.2927996891i |
L(1) |
≈ |
0.4269796785−0.2927996891i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 107 | 1 |
good | 2 | 1+(−0.553−0.832i)T |
| 3 | 1+(−0.523−0.851i)T |
| 7 | 1+(−0.915+0.403i)T |
| 11 | 1+(0.563−0.826i)T |
| 13 | 1+(−0.353−0.935i)T |
| 17 | 1+(−0.933+0.359i)T |
| 19 | 1+(0.217+0.976i)T |
| 23 | 1+(−0.772−0.634i)T |
| 29 | 1+(0.997+0.0710i)T |
| 31 | 1+(0.472−0.881i)T |
| 37 | 1+(0.949+0.314i)T |
| 41 | 1+(−0.513−0.858i)T |
| 43 | 1+(−0.533+0.845i)T |
| 47 | 1+(−0.919+0.392i)T |
| 53 | 1+(−0.620−0.783i)T |
| 59 | 1+(0.848+0.528i)T |
| 61 | 1+(0.503+0.864i)T |
| 67 | 1+(−0.683−0.729i)T |
| 71 | 1+(−0.0769−0.997i)T |
| 73 | 1+(−0.297+0.954i)T |
| 79 | 1+(−0.0177−0.999i)T |
| 83 | 1+(−0.910+0.413i)T |
| 89 | 1+(−0.872−0.487i)T |
| 97 | 1+(0.867−0.498i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.34359399733334801289206804550, −18.187033832616679313266536523182, −17.62350935272501605606306041320, −17.074760312271598778547938473937, −16.36720470885480249517288583371, −15.79006070561424633675456948745, −15.34120832163343093219070049859, −14.40968474450328914273006745082, −13.822912205287980696908371546006, −12.91551908401201607203283825634, −11.82354364126824128905102832796, −11.27230717360322166771115521193, −10.212359887255533601147440263528, −9.78308425083398135933482578576, −9.24131153913403007724373260472, −8.549799411682723107886240855907, −7.26679372494661255243886834735, −6.67026940014819943291981677535, −6.30571004616402026266728520669, −5.09816938916196348676691795152, −4.54118351728158366670019491616, −3.8802316471381594194773485259, −2.62292462982480686114017439753, −1.351941747264584257317277402238, −0.2332351421002541607287586750,
0.42964944174438042222393334399, 1.30007007660324971257150880733, 2.32482123615361360883001100622, 2.95326938531653997043068084212, 3.854284110285990896095952166715, 4.908130570401207982384748362518, 6.08236281207429612733854465920, 6.39176094851925996410615305403, 7.4975737240118686649319342603, 8.27948675083259607343308685557, 8.734237646607416014975881689395, 9.91474642745277669698475582941, 10.30031795399715139664122765533, 11.31344777700270320637470896759, 11.82913380910544661892505418184, 12.53386697901714354440899644870, 13.07014342040723657162392934650, 13.673096652225812648749123544024, 14.60929478950147317875163812317, 15.848381929160472750566187440195, 16.45760949258597768710043206794, 17.05444903356206755907797216478, 17.86316465736268987755224149294, 18.350100215083095304410209090145, 19.08512440379817810322584711911