L(s) = 1 | + (0.912 + 0.409i)2-s + (−0.430 + 0.902i)3-s + (0.664 + 0.747i)4-s + (0.982 − 0.186i)5-s + (−0.762 + 0.646i)6-s + (−0.163 + 0.986i)7-s + (0.300 + 0.953i)8-s + (−0.628 − 0.777i)9-s + (0.972 + 0.232i)10-s + (−0.946 + 0.322i)11-s + (−0.960 + 0.277i)12-s + (−0.972 − 0.232i)13-s + (−0.553 + 0.833i)14-s + (−0.255 + 0.966i)15-s + (−0.116 + 0.993i)16-s + (0.946 + 0.322i)17-s + ⋯ |
L(s) = 1 | + (0.912 + 0.409i)2-s + (−0.430 + 0.902i)3-s + (0.664 + 0.747i)4-s + (0.982 − 0.186i)5-s + (−0.762 + 0.646i)6-s + (−0.163 + 0.986i)7-s + (0.300 + 0.953i)8-s + (−0.628 − 0.777i)9-s + (0.972 + 0.232i)10-s + (−0.946 + 0.322i)11-s + (−0.960 + 0.277i)12-s + (−0.972 − 0.232i)13-s + (−0.553 + 0.833i)14-s + (−0.255 + 0.966i)15-s + (−0.116 + 0.993i)16-s + (0.946 + 0.322i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 269 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.522 + 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 269 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.522 + 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9499191151 + 1.695655494i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9499191151 + 1.695655494i\) |
\(L(1)\) |
\(\approx\) |
\(1.282115032 + 1.018826026i\) |
\(L(1)\) |
\(\approx\) |
\(1.282115032 + 1.018826026i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 269 | \( 1 \) |
good | 2 | \( 1 + (0.912 + 0.409i)T \) |
| 3 | \( 1 + (-0.430 + 0.902i)T \) |
| 5 | \( 1 + (0.982 - 0.186i)T \) |
| 7 | \( 1 + (-0.163 + 0.986i)T \) |
| 11 | \( 1 + (-0.946 + 0.322i)T \) |
| 13 | \( 1 + (-0.972 - 0.232i)T \) |
| 17 | \( 1 + (0.946 + 0.322i)T \) |
| 19 | \( 1 + (0.990 - 0.140i)T \) |
| 23 | \( 1 + (0.430 - 0.902i)T \) |
| 29 | \( 1 + (-0.930 - 0.366i)T \) |
| 31 | \( 1 + (-0.792 + 0.610i)T \) |
| 37 | \( 1 + (0.0702 - 0.997i)T \) |
| 41 | \( 1 + (-0.912 + 0.409i)T \) |
| 43 | \( 1 + (0.930 + 0.366i)T \) |
| 47 | \( 1 + (0.591 + 0.806i)T \) |
| 53 | \( 1 + (0.513 + 0.858i)T \) |
| 59 | \( 1 + (-0.664 - 0.747i)T \) |
| 61 | \( 1 + (0.344 - 0.938i)T \) |
| 67 | \( 1 + (0.664 - 0.747i)T \) |
| 71 | \( 1 + (0.553 + 0.833i)T \) |
| 73 | \( 1 + (-0.388 - 0.921i)T \) |
| 79 | \( 1 + (0.995 + 0.0936i)T \) |
| 83 | \( 1 + (0.209 - 0.977i)T \) |
| 89 | \( 1 + (-0.0234 - 0.999i)T \) |
| 97 | \( 1 + (0.344 + 0.938i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.2495756184049732300963313775, −24.189753952478673426790156002013, −23.71394557109879248017865681955, −22.68117272855738798963450566393, −22.038118213317337429138236885024, −20.93445935744064103761298411802, −20.13962091520060665122937461795, −19.020518869618475822666779161885, −18.29686564598423006390766152386, −17.06462727963415160360068533570, −16.39147490678901095401506007635, −14.80111996479573654505245004564, −13.76621047840113660907920138227, −13.44358644444252254669288689089, −12.46685932789550095497960855629, −11.408686869409408282711689367374, −10.4515903332640262948099314760, −9.652527497294128327403400947, −7.51341597059192850989599569264, −6.99845290625400236868305640594, −5.61468196509053665265226327032, −5.183871533977615501201876634647, −3.357788548270417245295888987380, −2.27154964558707562142099191894, −1.08751870479458982049399333428,
2.30900037012692884308597747827, 3.22981556356350304837525272311, 4.89022227371268990302701652710, 5.36687796034836479673832993984, 6.14164931409451993589058671731, 7.585990665074592069526994460, 9.004117348448925328944499535721, 9.93498630551973137113472432799, 10.97565825832079065722566323823, 12.30436590508331397651250259004, 12.75197365762527349423649361439, 14.20586649123004164450092487397, 14.90488192897150078684924740496, 15.79560292500051246322065177791, 16.63365207537198580241187292482, 17.469324540087230279412211413530, 18.44921366783219621813297302253, 20.227420820201651676652441500333, 20.97745570512639367673195987622, 21.69750735771223530253863985733, 22.27264302457114570253215120111, 23.127953993175141347392230460733, 24.30246400554054474496813452590, 25.09707290571398426167570232393, 25.935373901145167142416968539814