L(s) = 1 | + (0.998 + 0.0468i)2-s + (0.388 − 0.921i)3-s + (0.995 + 0.0936i)4-s + (−0.946 − 0.322i)5-s + (0.430 − 0.902i)6-s + (0.628 + 0.777i)7-s + (0.990 + 0.140i)8-s + (−0.698 − 0.715i)9-s + (−0.930 − 0.366i)10-s + (−0.209 − 0.977i)11-s + (0.472 − 0.881i)12-s + (0.930 + 0.366i)13-s + (0.591 + 0.806i)14-s + (−0.664 + 0.747i)15-s + (0.982 + 0.186i)16-s + (0.209 − 0.977i)17-s + ⋯ |
L(s) = 1 | + (0.998 + 0.0468i)2-s + (0.388 − 0.921i)3-s + (0.995 + 0.0936i)4-s + (−0.946 − 0.322i)5-s + (0.430 − 0.902i)6-s + (0.628 + 0.777i)7-s + (0.990 + 0.140i)8-s + (−0.698 − 0.715i)9-s + (−0.930 − 0.366i)10-s + (−0.209 − 0.977i)11-s + (0.472 − 0.881i)12-s + (0.930 + 0.366i)13-s + (0.591 + 0.806i)14-s + (−0.664 + 0.747i)15-s + (0.982 + 0.186i)16-s + (0.209 − 0.977i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 269 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.550 - 0.834i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 269 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.550 - 0.834i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.076179029 - 1.117450581i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.076179029 - 1.117450581i\) |
\(L(1)\) |
\(\approx\) |
\(1.840258165 - 0.5841070263i\) |
\(L(1)\) |
\(\approx\) |
\(1.840258165 - 0.5841070263i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 269 | \( 1 \) |
good | 2 | \( 1 + (0.998 + 0.0468i)T \) |
| 3 | \( 1 + (0.388 - 0.921i)T \) |
| 5 | \( 1 + (-0.946 - 0.322i)T \) |
| 7 | \( 1 + (0.628 + 0.777i)T \) |
| 11 | \( 1 + (-0.209 - 0.977i)T \) |
| 13 | \( 1 + (0.930 + 0.366i)T \) |
| 17 | \( 1 + (0.209 - 0.977i)T \) |
| 19 | \( 1 + (-0.513 - 0.858i)T \) |
| 23 | \( 1 + (-0.388 + 0.921i)T \) |
| 29 | \( 1 + (-0.792 + 0.610i)T \) |
| 31 | \( 1 + (0.912 - 0.409i)T \) |
| 37 | \( 1 + (-0.869 + 0.493i)T \) |
| 41 | \( 1 + (-0.998 + 0.0468i)T \) |
| 43 | \( 1 + (0.792 - 0.610i)T \) |
| 47 | \( 1 + (0.0702 + 0.997i)T \) |
| 53 | \( 1 + (-0.972 + 0.232i)T \) |
| 59 | \( 1 + (-0.995 - 0.0936i)T \) |
| 61 | \( 1 + (0.845 + 0.533i)T \) |
| 67 | \( 1 + (0.995 - 0.0936i)T \) |
| 71 | \( 1 + (-0.591 + 0.806i)T \) |
| 73 | \( 1 + (-0.300 + 0.953i)T \) |
| 79 | \( 1 + (0.163 + 0.986i)T \) |
| 83 | \( 1 + (0.0234 - 0.999i)T \) |
| 89 | \( 1 + (0.344 + 0.938i)T \) |
| 97 | \( 1 + (0.845 - 0.533i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.99577843301047012561067726947, −24.960368174414643090144439138233, −23.74954075755303160634010698613, −23.04388854876679469394453648480, −22.500349324440626789300116654607, −21.17185707973282832674307173999, −20.604055069017795035755565317813, −19.962076738619059106841746418076, −18.91846011930386661958962737119, −17.28177530051317734705599687694, −16.29538737264517101752719428228, −15.40521590303126708388284194088, −14.79145194174743928563880190564, −14.04632395378409744696113492657, −12.821202463742710962695017174005, −11.73582852904819455156924289632, −10.62716612992833987896751907390, −10.34345978686311443253549991746, −8.31092534054113962049971473470, −7.68175879789422856722149010818, −6.31964716235086825004658959134, −4.893045461791652230202041358064, −4.06757295799290249517492728977, −3.478891796542804760213079816144, −1.945129200592844655981097469585,
1.330975446850984347228111706325, 2.708306841392677222814112800669, 3.66579664391080428908789461485, 5.037135052175373985355358742453, 6.057039942543714273356327885731, 7.20721665514897719274689539646, 8.14635834627501838019786903216, 8.905322201704234269201565783295, 11.242809085665393093276201962340, 11.533794360967725662153020610315, 12.516121963436879085287402718554, 13.49902065184676139857969160914, 14.20398672258807065575167691003, 15.376652376370816742408949602675, 15.930235750214468394937733411, 17.24953800295583863220017932229, 18.66345920337516423385568423327, 19.16079620622259493390744049612, 20.339105664413777036133302853882, 20.95326463987160435018595895340, 22.05878465654332331396724844133, 23.20187720204804670101844021489, 23.97658916500742528370446685908, 24.30106121912864773802845596909, 25.33249035029173838903359934505