L(s) = 1 | + (0.300 − 0.953i)2-s + (0.972 + 0.232i)3-s + (−0.819 − 0.572i)4-s + (0.845 + 0.533i)5-s + (0.513 − 0.858i)6-s + (0.472 + 0.881i)7-s + (−0.792 + 0.610i)8-s + (0.892 + 0.451i)9-s + (0.762 − 0.646i)10-s + (−0.553 − 0.833i)11-s + (−0.664 − 0.747i)12-s + (−0.762 + 0.646i)13-s + (0.982 − 0.186i)14-s + (0.698 + 0.715i)15-s + (0.344 + 0.938i)16-s + (0.553 − 0.833i)17-s + ⋯ |
L(s) = 1 | + (0.300 − 0.953i)2-s + (0.972 + 0.232i)3-s + (−0.819 − 0.572i)4-s + (0.845 + 0.533i)5-s + (0.513 − 0.858i)6-s + (0.472 + 0.881i)7-s + (−0.792 + 0.610i)8-s + (0.892 + 0.451i)9-s + (0.762 − 0.646i)10-s + (−0.553 − 0.833i)11-s + (−0.664 − 0.747i)12-s + (−0.762 + 0.646i)13-s + (0.982 − 0.186i)14-s + (0.698 + 0.715i)15-s + (0.344 + 0.938i)16-s + (0.553 − 0.833i)17-s + ⋯ |
Λ(s)=(=(269s/2ΓR(s)L(s)(0.847−0.530i)Λ(1−s)
Λ(s)=(=(269s/2ΓR(s)L(s)(0.847−0.530i)Λ(1−s)
Degree: |
1 |
Conductor: |
269
|
Sign: |
0.847−0.530i
|
Analytic conductor: |
1.24923 |
Root analytic conductor: |
1.24923 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ269(51,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 269, (0: ), 0.847−0.530i)
|
Particular Values
L(21) |
≈ |
1.983027836−0.5698697280i |
L(21) |
≈ |
1.983027836−0.5698697280i |
L(1) |
≈ |
1.632232028−0.4458896832i |
L(1) |
≈ |
1.632232028−0.4458896832i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 269 | 1 |
good | 2 | 1+(0.300−0.953i)T |
| 3 | 1+(0.972+0.232i)T |
| 5 | 1+(0.845+0.533i)T |
| 7 | 1+(0.472+0.881i)T |
| 11 | 1+(−0.553−0.833i)T |
| 13 | 1+(−0.762+0.646i)T |
| 17 | 1+(0.553−0.833i)T |
| 19 | 1+(0.912+0.409i)T |
| 23 | 1+(−0.972−0.232i)T |
| 29 | 1+(−0.430+0.902i)T |
| 31 | 1+(0.388−0.921i)T |
| 37 | 1+(−0.209−0.977i)T |
| 41 | 1+(−0.300−0.953i)T |
| 43 | 1+(0.430−0.902i)T |
| 47 | 1+(−0.946−0.322i)T |
| 53 | 1+(−0.998−0.0468i)T |
| 59 | 1+(0.819+0.572i)T |
| 61 | 1+(−0.869−0.493i)T |
| 67 | 1+(−0.819+0.572i)T |
| 71 | 1+(−0.982−0.186i)T |
| 73 | 1+(0.930−0.366i)T |
| 79 | 1+(0.960−0.277i)T |
| 83 | 1+(−0.591−0.806i)T |
| 89 | 1+(0.0702−0.997i)T |
| 97 | 1+(−0.869+0.493i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−25.80506512388070725215033407649, −24.889524576002351870532280166855, −24.238647575115563035497508381038, −23.492306692015279875669210745616, −22.252034201354411879218968003841, −21.1941934648649261552865278540, −20.53178594621734939817020413, −19.57446174339617115648484427745, −18.00042192652638632721239380402, −17.65381841500553759971863430341, −16.58770266059937390059399851710, −15.43460713916999561548651077078, −14.57812252291886622969298381854, −13.799181181775991177049171786198, −13.08550488793662437629492233870, −12.27670272960367465953817901686, −10.053172551586873700360444461732, −9.62596526783379603657351829020, −8.12416330040067951772495561469, −7.73796131493131844294189851305, −6.56102172062576049398598089272, −5.188609211825938204812412730913, −4.35196950281467883088229989606, −2.964168071046903811004513110210, −1.4401157635546919059675449928,
1.801903531444037707061142639481, 2.55644289442653421219470236248, 3.44796796367567417041295400887, 4.95967189524655384407635084229, 5.794463372722888753285849218909, 7.55432078902505653822739505197, 8.81444671282634704393162349479, 9.55451610684322896383520909204, 10.36186516735103443803689122180, 11.51248969040187540853238219022, 12.54180871316209280095134928507, 13.82164738389261435286294783901, 14.142413442963953056949872227939, 15.02136109469576393302150385020, 16.2772976089229946006266230493, 17.92568071777364373041576170537, 18.610830269393209880789885470550, 19.17525897695878182859461762996, 20.52683836838997766314912458683, 21.06650693198344177801207987948, 21.885281475947592457405808332155, 22.38218545021702960861861100309, 24.08163023924403826726271951897, 24.65835139050537514707054909738, 25.84410932514193401136920616198