L(s) = 1 | + (−0.885 − 0.464i)3-s + (−0.663 − 0.748i)5-s + (−0.239 − 0.970i)7-s + (0.568 + 0.822i)9-s + (0.822 + 0.568i)11-s + (0.239 + 0.970i)15-s + (0.970 − 0.239i)17-s − i·19-s + (−0.239 + 0.970i)21-s + 23-s + (−0.120 + 0.992i)25-s + (−0.120 − 0.992i)27-s + (0.568 + 0.822i)29-s + (0.992 − 0.120i)31-s + (−0.464 − 0.885i)33-s + ⋯ |
L(s) = 1 | + (−0.885 − 0.464i)3-s + (−0.663 − 0.748i)5-s + (−0.239 − 0.970i)7-s + (0.568 + 0.822i)9-s + (0.822 + 0.568i)11-s + (0.239 + 0.970i)15-s + (0.970 − 0.239i)17-s − i·19-s + (−0.239 + 0.970i)21-s + 23-s + (−0.120 + 0.992i)25-s + (−0.120 − 0.992i)27-s + (0.568 + 0.822i)29-s + (0.992 − 0.120i)31-s + (−0.464 − 0.885i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.175 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.175 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6003362776 - 0.7169553146i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6003362776 - 0.7169553146i\) |
\(L(1)\) |
\(\approx\) |
\(0.7315017283 - 0.3223538015i\) |
\(L(1)\) |
\(\approx\) |
\(0.7315017283 - 0.3223538015i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.885 - 0.464i)T \) |
| 5 | \( 1 + (-0.663 - 0.748i)T \) |
| 7 | \( 1 + (-0.239 - 0.970i)T \) |
| 11 | \( 1 + (0.822 + 0.568i)T \) |
| 17 | \( 1 + (0.970 - 0.239i)T \) |
| 19 | \( 1 - iT \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + (0.568 + 0.822i)T \) |
| 31 | \( 1 + (0.992 - 0.120i)T \) |
| 37 | \( 1 + (0.992 - 0.120i)T \) |
| 41 | \( 1 + (-0.464 + 0.885i)T \) |
| 43 | \( 1 + (0.120 - 0.992i)T \) |
| 47 | \( 1 + (0.935 - 0.354i)T \) |
| 53 | \( 1 + (-0.970 + 0.239i)T \) |
| 59 | \( 1 + (-0.663 - 0.748i)T \) |
| 61 | \( 1 + (-0.970 - 0.239i)T \) |
| 67 | \( 1 + (-0.935 + 0.354i)T \) |
| 71 | \( 1 + (0.464 - 0.885i)T \) |
| 73 | \( 1 + (-0.822 - 0.568i)T \) |
| 79 | \( 1 + (0.354 + 0.935i)T \) |
| 83 | \( 1 + (-0.464 - 0.885i)T \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 + (0.663 - 0.748i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.89067091228411552516001962554, −22.25158057031116773056695991002, −21.51922864055352068663284799702, −20.816727008888775907448069876171, −19.3510257369414957068745343190, −18.93025263000201176238533534357, −18.15519787112302205167726655619, −17.09478222483286349446421813518, −16.39502717898574402153510755713, −15.53644366696405221351536912602, −14.925890381359816333241555516996, −14.08080551331659637010929548905, −12.58031799543151122989725058063, −11.94180833012883884423814431976, −11.37267386812766901347771107948, −10.419327934620607597661985602381, −9.612199669900761504016109355563, −8.57259567315531574274417471051, −7.50741674128456452812125255915, −6.27136204611452497478621764728, −5.97106779166208142084108631110, −4.67311354288821745639293260850, −3.665623282156886884532442277953, −2.85370802692362787602399456012, −1.116257865844979678858322427452,
0.68610962558817533855120446913, 1.418828151152139105436081783889, 3.20418582751835058582267865769, 4.46465510554987139557577397156, 4.89463794164094366507002406926, 6.244103366292967015106434175128, 7.13706640450052574030294240893, 7.688431746905325337670384847395, 8.93911891251075185328287001983, 9.9342688946259410217557586733, 10.918351278450922548549936489769, 11.71881576960149565945341624320, 12.430194058888386441029695196426, 13.16014103481084625199680541080, 14.04401858470561226607716412295, 15.26384035405670190940315898505, 16.15670273040683097517182665061, 17.01040631590041854989270691501, 17.20502713200000745273391808555, 18.42055167758261468102446747427, 19.38674548865680747183403431124, 19.91392786339231233054087919378, 20.79374596431632758662307097970, 21.8690691328774537958997787791, 22.789988567252438705594645383476