L(s) = 1 | + 2-s + 4-s + (0.5 + 0.866i)5-s + 8-s + (0.5 + 0.866i)10-s + (−0.5 − 0.866i)11-s + 16-s + 17-s + (−0.5 + 0.866i)19-s + (0.5 + 0.866i)20-s + (−0.5 − 0.866i)22-s − 23-s + (−0.5 + 0.866i)25-s + (0.5 − 0.866i)29-s + (−0.5 + 0.866i)31-s + 32-s + ⋯ |
L(s) = 1 | + 2-s + 4-s + (0.5 + 0.866i)5-s + 8-s + (0.5 + 0.866i)10-s + (−0.5 − 0.866i)11-s + 16-s + 17-s + (−0.5 + 0.866i)19-s + (0.5 + 0.866i)20-s + (−0.5 − 0.866i)22-s − 23-s + (−0.5 + 0.866i)25-s + (0.5 − 0.866i)29-s + (−0.5 + 0.866i)31-s + 32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.927 + 0.374i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.927 + 0.374i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.412899711 + 0.4690856261i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.412899711 + 0.4690856261i\) |
\(L(1)\) |
\(\approx\) |
\(1.974956782 + 0.2282725771i\) |
\(L(1)\) |
\(\approx\) |
\(1.974956782 + 0.2282725771i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + T \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 + (0.5 - 0.866i)T \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 - T \) |
| 61 | \( 1 + (0.5 - 0.866i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.5 - 0.866i)T \) |
| 73 | \( 1 + (-0.5 + 0.866i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (-0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.53407967226194095416395172711, −24.59455251951113730397316124458, −23.7658019639427937019436261384, −23.08173449724473522509713769878, −21.887081669207775978809410430540, −21.23152117327349309479319379040, −20.35692267887874687288325552849, −19.71242879014442997361933930165, −18.22652803898206997238574077969, −17.12790833395704030711434565822, −16.297200575215240674580167741756, −15.37367641139748903016522708838, −14.375769688522254731481911943333, −13.39933699438816453800336559494, −12.63284671413707962715637468720, −11.91315308913042173846699237760, −10.55836705851273950980576023523, −9.64496542943816392607517558898, −8.24067558884500497527961933480, −7.14514325035651326371196587205, −5.9101454143574864846547981372, −5.04458941050903129935097575068, −4.157045135444236194831868344145, −2.66003053655980546698228287846, −1.533321521405612395296018474228,
1.82687399004739372206766210842, 2.98263686421173500008818484705, 3.87261286085133974853536228782, 5.465735478564525367735596987498, 6.06475335094636524115340795234, 7.19791909295807911609061583850, 8.260687722126872890785474954269, 10.06448271404097554068994536792, 10.656030688468376769397678486621, 11.76215661410033397215342977996, 12.727606914419680789903893179673, 13.96298992612011698682471287402, 14.23261084466025287583925168551, 15.43197804425441438606480588419, 16.299977478612533703981020188369, 17.36654494330226881440316003551, 18.65098519683341697309050778088, 19.31932557706000505887934992097, 20.705186827523612767201567517120, 21.36006173180843685050487565864, 22.11539826420894403376302801031, 23.02661883102827812065755947957, 23.75233569978345764567661871490, 24.82317665637523888485973243854, 25.63037115409518782711705477057