Properties

Label 1-273-273.257-r0-0-0
Degree 11
Conductor 273273
Sign 0.927+0.374i0.927 + 0.374i
Analytic cond. 1.267801.26780
Root an. cond. 1.267801.26780
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + (0.5 + 0.866i)5-s + 8-s + (0.5 + 0.866i)10-s + (−0.5 − 0.866i)11-s + 16-s + 17-s + (−0.5 + 0.866i)19-s + (0.5 + 0.866i)20-s + (−0.5 − 0.866i)22-s − 23-s + (−0.5 + 0.866i)25-s + (0.5 − 0.866i)29-s + (−0.5 + 0.866i)31-s + 32-s + ⋯
L(s)  = 1  + 2-s + 4-s + (0.5 + 0.866i)5-s + 8-s + (0.5 + 0.866i)10-s + (−0.5 − 0.866i)11-s + 16-s + 17-s + (−0.5 + 0.866i)19-s + (0.5 + 0.866i)20-s + (−0.5 − 0.866i)22-s − 23-s + (−0.5 + 0.866i)25-s + (0.5 − 0.866i)29-s + (−0.5 + 0.866i)31-s + 32-s + ⋯

Functional equation

Λ(s)=(273s/2ΓR(s)L(s)=((0.927+0.374i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.927 + 0.374i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(273s/2ΓR(s)L(s)=((0.927+0.374i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.927 + 0.374i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 273273    =    37133 \cdot 7 \cdot 13
Sign: 0.927+0.374i0.927 + 0.374i
Analytic conductor: 1.267801.26780
Root analytic conductor: 1.267801.26780
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ273(257,)\chi_{273} (257, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 273, (0: ), 0.927+0.374i)(1,\ 273,\ (0:\ ),\ 0.927 + 0.374i)

Particular Values

L(12)L(\frac{1}{2}) \approx 2.412899711+0.4690856261i2.412899711 + 0.4690856261i
L(12)L(\frac12) \approx 2.412899711+0.4690856261i2.412899711 + 0.4690856261i
L(1)L(1) \approx 1.974956782+0.2282725771i1.974956782 + 0.2282725771i
L(1)L(1) \approx 1.974956782+0.2282725771i1.974956782 + 0.2282725771i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1 1
13 1 1
good2 1+T 1 + T
5 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
11 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
17 1+T 1 + T
19 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
23 1T 1 - T
29 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
31 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
37 1T 1 - T
41 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
43 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
47 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
53 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
59 1T 1 - T
61 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
67 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
71 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
73 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
79 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
83 1T 1 - T
89 1T 1 - T
97 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−25.53407967226194095416395172711, −24.59455251951113730397316124458, −23.7658019639427937019436261384, −23.08173449724473522509713769878, −21.887081669207775978809410430540, −21.23152117327349309479319379040, −20.35692267887874687288325552849, −19.71242879014442997361933930165, −18.22652803898206997238574077969, −17.12790833395704030711434565822, −16.297200575215240674580167741756, −15.37367641139748903016522708838, −14.375769688522254731481911943333, −13.39933699438816453800336559494, −12.63284671413707962715637468720, −11.91315308913042173846699237760, −10.55836705851273950980576023523, −9.64496542943816392607517558898, −8.24067558884500497527961933480, −7.14514325035651326371196587205, −5.9101454143574864846547981372, −5.04458941050903129935097575068, −4.157045135444236194831868344145, −2.66003053655980546698228287846, −1.533321521405612395296018474228, 1.82687399004739372206766210842, 2.98263686421173500008818484705, 3.87261286085133974853536228782, 5.465735478564525367735596987498, 6.06475335094636524115340795234, 7.19791909295807911609061583850, 8.260687722126872890785474954269, 10.06448271404097554068994536792, 10.656030688468376769397678486621, 11.76215661410033397215342977996, 12.727606914419680789903893179673, 13.96298992612011698682471287402, 14.23261084466025287583925168551, 15.43197804425441438606480588419, 16.299977478612533703981020188369, 17.36654494330226881440316003551, 18.65098519683341697309050778088, 19.31932557706000505887934992097, 20.705186827523612767201567517120, 21.36006173180843685050487565864, 22.11539826420894403376302801031, 23.02661883102827812065755947957, 23.75233569978345764567661871490, 24.82317665637523888485973243854, 25.63037115409518782711705477057

Graph of the ZZ-function along the critical line