L(s) = 1 | + 2-s + 4-s + (0.5 + 0.866i)5-s + 8-s + (0.5 + 0.866i)10-s + (−0.5 − 0.866i)11-s + 16-s + 17-s + (−0.5 + 0.866i)19-s + (0.5 + 0.866i)20-s + (−0.5 − 0.866i)22-s − 23-s + (−0.5 + 0.866i)25-s + (0.5 − 0.866i)29-s + (−0.5 + 0.866i)31-s + 32-s + ⋯ |
L(s) = 1 | + 2-s + 4-s + (0.5 + 0.866i)5-s + 8-s + (0.5 + 0.866i)10-s + (−0.5 − 0.866i)11-s + 16-s + 17-s + (−0.5 + 0.866i)19-s + (0.5 + 0.866i)20-s + (−0.5 − 0.866i)22-s − 23-s + (−0.5 + 0.866i)25-s + (0.5 − 0.866i)29-s + (−0.5 + 0.866i)31-s + 32-s + ⋯ |
Λ(s)=(=(273s/2ΓR(s)L(s)(0.927+0.374i)Λ(1−s)
Λ(s)=(=(273s/2ΓR(s)L(s)(0.927+0.374i)Λ(1−s)
Degree: |
1 |
Conductor: |
273
= 3⋅7⋅13
|
Sign: |
0.927+0.374i
|
Analytic conductor: |
1.26780 |
Root analytic conductor: |
1.26780 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ273(257,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 273, (0: ), 0.927+0.374i)
|
Particular Values
L(21) |
≈ |
2.412899711+0.4690856261i |
L(21) |
≈ |
2.412899711+0.4690856261i |
L(1) |
≈ |
1.974956782+0.2282725771i |
L(1) |
≈ |
1.974956782+0.2282725771i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
| 13 | 1 |
good | 2 | 1+T |
| 5 | 1+(0.5+0.866i)T |
| 11 | 1+(−0.5−0.866i)T |
| 17 | 1+T |
| 19 | 1+(−0.5+0.866i)T |
| 23 | 1−T |
| 29 | 1+(0.5−0.866i)T |
| 31 | 1+(−0.5+0.866i)T |
| 37 | 1−T |
| 41 | 1+(0.5−0.866i)T |
| 43 | 1+(−0.5−0.866i)T |
| 47 | 1+(0.5+0.866i)T |
| 53 | 1+(0.5−0.866i)T |
| 59 | 1−T |
| 61 | 1+(0.5−0.866i)T |
| 67 | 1+(0.5+0.866i)T |
| 71 | 1+(−0.5−0.866i)T |
| 73 | 1+(−0.5+0.866i)T |
| 79 | 1+(−0.5−0.866i)T |
| 83 | 1−T |
| 89 | 1−T |
| 97 | 1+(−0.5−0.866i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−25.53407967226194095416395172711, −24.59455251951113730397316124458, −23.7658019639427937019436261384, −23.08173449724473522509713769878, −21.887081669207775978809410430540, −21.23152117327349309479319379040, −20.35692267887874687288325552849, −19.71242879014442997361933930165, −18.22652803898206997238574077969, −17.12790833395704030711434565822, −16.297200575215240674580167741756, −15.37367641139748903016522708838, −14.375769688522254731481911943333, −13.39933699438816453800336559494, −12.63284671413707962715637468720, −11.91315308913042173846699237760, −10.55836705851273950980576023523, −9.64496542943816392607517558898, −8.24067558884500497527961933480, −7.14514325035651326371196587205, −5.9101454143574864846547981372, −5.04458941050903129935097575068, −4.157045135444236194831868344145, −2.66003053655980546698228287846, −1.533321521405612395296018474228,
1.82687399004739372206766210842, 2.98263686421173500008818484705, 3.87261286085133974853536228782, 5.465735478564525367735596987498, 6.06475335094636524115340795234, 7.19791909295807911609061583850, 8.260687722126872890785474954269, 10.06448271404097554068994536792, 10.656030688468376769397678486621, 11.76215661410033397215342977996, 12.727606914419680789903893179673, 13.96298992612011698682471287402, 14.23261084466025287583925168551, 15.43197804425441438606480588419, 16.299977478612533703981020188369, 17.36654494330226881440316003551, 18.65098519683341697309050778088, 19.31932557706000505887934992097, 20.705186827523612767201567517120, 21.36006173180843685050487565864, 22.11539826420894403376302801031, 23.02661883102827812065755947957, 23.75233569978345764567661871490, 24.82317665637523888485973243854, 25.63037115409518782711705477057