L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.5 + 0.866i)4-s + (0.5 − 0.866i)5-s − 8-s + 10-s − 11-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + 19-s + (0.5 + 0.866i)20-s + (−0.5 − 0.866i)22-s + (0.5 + 0.866i)23-s + (−0.5 − 0.866i)25-s + (0.5 − 0.866i)29-s + (−0.5 − 0.866i)31-s + (0.5 − 0.866i)32-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.5 + 0.866i)4-s + (0.5 − 0.866i)5-s − 8-s + 10-s − 11-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + 19-s + (0.5 + 0.866i)20-s + (−0.5 − 0.866i)22-s + (0.5 + 0.866i)23-s + (−0.5 − 0.866i)25-s + (0.5 − 0.866i)29-s + (−0.5 − 0.866i)31-s + (0.5 − 0.866i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.949 - 0.313i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.949 - 0.313i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.017587176 - 0.3243166239i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.017587176 - 0.3243166239i\) |
\(L(1)\) |
\(\approx\) |
\(1.289774281 + 0.2679502958i\) |
\(L(1)\) |
\(\approx\) |
\(1.289774281 + 0.2679502958i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 - T \) |
| 17 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (-0.5 - 0.866i)T \) |
| 41 | \( 1 + (0.5 - 0.866i)T \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.5 - 0.866i)T \) |
| 53 | \( 1 + (0.5 + 0.866i)T \) |
| 59 | \( 1 + (0.5 - 0.866i)T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (0.5 + 0.866i)T \) |
| 73 | \( 1 + (-0.5 - 0.866i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.64364515394006450899777170470, −24.41541161924455810313027947335, −23.43525006106548931682881803609, −22.704903200672051094308952281, −21.77756437936940916389498294542, −21.15463802900406081593830575123, −20.190512267213735372947239156518, −19.103779332235864282844961119460, −18.36449001937715853108044869698, −17.66410065152273770905571800200, −16.12705106538839629490785729814, −14.93425869116529289396353828027, −14.28272266875898266471114534394, −13.29038961515711574550061887855, −12.472401458359419979552557803531, −11.24306025308677378891067830749, −10.45181904830047813945978789096, −9.78855288854244502346291959786, −8.4247576988669418364249818976, −6.96424022102329053271278623209, −5.82104844052629442830232108026, −4.90437164284411319078473114127, −3.38237082221654179663562589912, −2.640706507031475806735522923, −1.31371042208338518080498781270,
0.561228181057559454870140900195, 2.48820604007981776898641099339, 3.88097711710668738109649131729, 5.281681687982364240516852970265, 5.51985619421060801545667895513, 7.114710362548041414570212346734, 7.966269221971018760200565741175, 9.062362045714410660498606208606, 9.926622968982147873051304763057, 11.60652233759857883988648930689, 12.57427859351963709986139824941, 13.468019067814047927932652615627, 14.057942876379270550130317850326, 15.469197034638504781214324624459, 16.055461777544200165468713303173, 17.01171296610047562350797461250, 17.819871527794500529168436298850, 18.74706596428036786517672955160, 20.35794981290993775582765512766, 20.99679966717458726441263370464, 21.83772777423640125089398767611, 22.9469883928535006029096332139, 23.69703657099995594957036314169, 24.60308726351423793534755861938, 25.22052619566339048461617187344