Properties

Label 1-275-275.81-r0-0-0
Degree 11
Conductor 275275
Sign 0.920+0.390i0.920 + 0.390i
Analytic cond. 1.277091.27709
Root an. cond. 1.277091.27709
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.809 − 0.587i)2-s + (−0.809 + 0.587i)3-s + (0.309 + 0.951i)4-s + 6-s + (−0.809 + 0.587i)7-s + (0.309 − 0.951i)8-s + (0.309 − 0.951i)9-s + (−0.809 − 0.587i)12-s + (0.309 − 0.951i)13-s + 14-s + (−0.809 + 0.587i)16-s + 17-s + (−0.809 + 0.587i)18-s + (0.309 − 0.951i)19-s + (0.309 − 0.951i)21-s + ⋯
L(s)  = 1  + (−0.809 − 0.587i)2-s + (−0.809 + 0.587i)3-s + (0.309 + 0.951i)4-s + 6-s + (−0.809 + 0.587i)7-s + (0.309 − 0.951i)8-s + (0.309 − 0.951i)9-s + (−0.809 − 0.587i)12-s + (0.309 − 0.951i)13-s + 14-s + (−0.809 + 0.587i)16-s + 17-s + (−0.809 + 0.587i)18-s + (0.309 − 0.951i)19-s + (0.309 − 0.951i)21-s + ⋯

Functional equation

Λ(s)=(275s/2ΓR(s)L(s)=((0.920+0.390i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.920 + 0.390i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(275s/2ΓR(s)L(s)=((0.920+0.390i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.920 + 0.390i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 275275    =    52115^{2} \cdot 11
Sign: 0.920+0.390i0.920 + 0.390i
Analytic conductor: 1.277091.27709
Root analytic conductor: 1.277091.27709
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ275(81,)\chi_{275} (81, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 275, (0: ), 0.920+0.390i)(1,\ 275,\ (0:\ ),\ 0.920 + 0.390i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.5358035249+0.1088261455i0.5358035249 + 0.1088261455i
L(12)L(\frac12) \approx 0.5358035249+0.1088261455i0.5358035249 + 0.1088261455i
L(1)L(1) \approx 0.5572156589+0.01158921178i0.5572156589 + 0.01158921178i
L(1)L(1) \approx 0.5572156589+0.01158921178i0.5572156589 + 0.01158921178i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
11 1 1
good2 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
3 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
7 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
13 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
17 1+T 1 + T
19 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
23 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
29 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
31 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
37 1+T 1 + T
41 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
43 1+T 1 + T
47 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
53 1+T 1 + T
59 1+T 1 + T
61 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
67 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
71 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
73 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
79 1+T 1 + T
83 1+T 1 + T
89 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
97 1+T 1 + T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−25.66492522289357348241506021912, −24.73615159599267806041147778923, −23.825252838399760814898339706, −23.17695697568710537304115456080, −22.410124469989206401391132517882, −20.94487226185938439681154492400, −19.770442163325035183607263531976, −18.895122905244347943321441749774, −18.37601059651843983691447352964, −17.19987525892713430647096670242, −16.48113948938932077152657828466, −16.03448300307487093184295266078, −14.44831637828559341445328529221, −13.61571437804501153164826917861, −12.36600474888201353580576775989, −11.37420115107748664717048580096, −10.30282649204222813218818796402, −9.58882531192305288732438177766, −8.11250650898948395007034966285, −7.26970323099735153927866780976, −6.33806123465386558457809836795, −5.635563494074773163229228018593, −4.08588013410465699498974937844, −2.06551520229285675499152554494, −0.73665531557745548622824922782, 0.96623093423362030673724791765, 2.84462841825438907357748116374, 3.72970909250513521801030085677, 5.29577749161086339942291747683, 6.340936356416545270122581282682, 7.5704440342260404464332707072, 8.91441521184222427529836997094, 9.72773872532122672438801505889, 10.500348980810899878186160096223, 11.491149000135388669402231113693, 12.35873228781197843818968410048, 13.12582002659810144930315519702, 14.95741306635116640870049582961, 16.06755159378783048666536070122, 16.38302004832361561614090099893, 17.78404450286734800077417051606, 18.12688048081422992699761909938, 19.37896505488588278200529235583, 20.20478033036462334522320005434, 21.28554489577554742665462866649, 21.98424908858744254070136948888, 22.692875842100864035966214620045, 23.81375574391377771445147763187, 25.25957122225176993582784832095, 25.836587163247311547662727373229

Graph of the ZZ-function along the critical line