L(s) = 1 | + 3-s − 5-s + 9-s − 11-s − 13-s − 15-s − 17-s + 19-s − 23-s + 25-s + 27-s + 29-s + 31-s − 33-s + 37-s − 39-s − 41-s − 43-s − 45-s + 47-s − 51-s + 53-s + 55-s + 57-s + 59-s − 61-s + 65-s + ⋯ |
L(s) = 1 | + 3-s − 5-s + 9-s − 11-s − 13-s − 15-s − 17-s + 19-s − 23-s + 25-s + 27-s + 29-s + 31-s − 33-s + 37-s − 39-s − 41-s − 43-s − 45-s + 47-s − 51-s + 53-s + 55-s + 57-s + 59-s − 61-s + 65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8223610378\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8223610378\) |
\(L(1)\) |
\(\approx\) |
\(1.046454884\) |
\(L(1)\) |
\(\approx\) |
\(1.046454884\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + T \) |
| 5 | \( 1 - T \) |
| 11 | \( 1 - T \) |
| 13 | \( 1 - T \) |
| 17 | \( 1 - T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 + T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 - T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 - T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−37.512179947842773084657930490390, −36.36045602124227699396162943688, −35.268334030341376930207529526020, −33.849591836732886972765039184334, −32.184175727883333033755618747177, −31.36586297616383901440906943622, −30.39449098988413064026229502805, −28.72073200609003118776449308629, −27.02957442259405572955262877191, −26.38179066809542195016806658376, −24.73886680489813285047033853957, −23.691534626557196405383352007920, −21.9888981476056831334669883160, −20.39328285450433247152743984794, −19.538616099899411451627397917207, −18.20042527549262445931043231016, −16.01626147715059280892693066920, −15.06829496191904340653215529897, −13.544286371829787414922340082154, −12.02206203818595380135277821042, −10.116306854731297791099024344636, −8.39512407283755124263059308174, −7.29088506700227937478527206798, −4.526774087015476109286965871473, −2.77728324207659233094209284012,
2.77728324207659233094209284012, 4.526774087015476109286965871473, 7.29088506700227937478527206798, 8.39512407283755124263059308174, 10.116306854731297791099024344636, 12.02206203818595380135277821042, 13.544286371829787414922340082154, 15.06829496191904340653215529897, 16.01626147715059280892693066920, 18.20042527549262445931043231016, 19.538616099899411451627397917207, 20.39328285450433247152743984794, 21.9888981476056831334669883160, 23.691534626557196405383352007920, 24.73886680489813285047033853957, 26.38179066809542195016806658376, 27.02957442259405572955262877191, 28.72073200609003118776449308629, 30.39449098988413064026229502805, 31.36586297616383901440906943622, 32.184175727883333033755618747177, 33.849591836732886972765039184334, 35.268334030341376930207529526020, 36.36045602124227699396162943688, 37.512179947842773084657930490390