Properties

Label 1-2856-2856.251-r1-0-0
Degree $1$
Conductor $2856$
Sign $-0.615 - 0.788i$
Analytic cond. $306.919$
Root an. cond. $306.919$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·5-s + i·11-s + 13-s + 19-s i·23-s − 25-s + i·29-s + i·31-s i·37-s i·41-s − 43-s − 47-s − 53-s + 55-s − 59-s + ⋯
L(s)  = 1  i·5-s + i·11-s + 13-s + 19-s i·23-s − 25-s + i·29-s + i·31-s i·37-s i·41-s − 43-s − 47-s − 53-s + 55-s − 59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2856 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.615 - 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2856 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.615 - 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(2856\)    =    \(2^{3} \cdot 3 \cdot 7 \cdot 17\)
Sign: $-0.615 - 0.788i$
Analytic conductor: \(306.919\)
Root analytic conductor: \(306.919\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2856} (251, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 2856,\ (1:\ ),\ -0.615 - 0.788i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6382674128 - 1.308117048i\)
\(L(\frac12)\) \(\approx\) \(0.6382674128 - 1.308117048i\)
\(L(1)\) \(\approx\) \(1.030780644 - 0.2081568906i\)
\(L(1)\) \(\approx\) \(1.030780644 - 0.2081568906i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
17 \( 1 \)
good5 \( 1 \)
11 \( 1 \)
13 \( 1 - iT \)
19 \( 1 \)
23 \( 1 \)
29 \( 1 \)
31 \( 1 \)
37 \( 1 + iT \)
41 \( 1 \)
43 \( 1 + T \)
47 \( 1 \)
53 \( 1 \)
59 \( 1 \)
61 \( 1 \)
67 \( 1 \)
71 \( 1 + T \)
73 \( 1 \)
79 \( 1 \)
83 \( 1 \)
89 \( 1 - iT \)
97 \( 1 \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.04350259155210387469606582461, −18.59754326504966725642136250292, −18.00139606927771160997748690447, −17.19735924971810713794316997633, −16.35636082794606903095842735139, −15.676021105178687464445767208135, −15.09543559747064871493650444482, −14.24114826862400162687206758004, −13.5043509013046001567864472023, −13.27077099288747064555497560828, −11.7262072013693717845264719434, −11.502596610431207548647541541941, −10.799523305920070372607583816365, −9.90591122146893173231658396061, −9.346192639273855224358538941244, −8.18571655819844541866446286927, −7.81443538928999259052059214885, −6.75450796250562573608609391725, −6.12497816266200419835880663788, −5.53441550210924362969207628829, −4.369068202254887426661908872241, −3.31534165113142018019201093758, −3.13329463361873496925804551453, −1.870861246599765833432899955303, −0.94068028548101282018276012688, 0.255483636365749693962321389457, 1.294224941774004523402976266549, 1.89147995854238812105401664907, 3.14401932069365511950510396778, 3.95425614451248486028912311316, 4.84991334650559685392153142653, 5.3156013156881497896339884218, 6.34494615488167318032749200303, 7.112379417989166453422015116890, 7.99189326219176594033082499266, 8.69409264809243750234479583631, 9.30976336919169382867180896447, 10.077391148069206690965036957758, 10.89752459946952280826505617706, 11.72448311765797687036511206721, 12.60006295789862133055913872285, 12.78383541086347326526944072825, 13.86855282689577806755137328881, 14.36916577247828930816345579317, 15.45013451831295054300190273699, 15.970055665915522402358835068175, 16.54425239207520863322644964187, 17.37608214120733314983511067500, 18.03755528976506984484603493164, 18.5858930121901638750133404024

Graph of the $Z$-function along the critical line