L(s) = 1 | − i·5-s + i·11-s + 13-s + 19-s − i·23-s − 25-s + i·29-s + i·31-s − i·37-s − i·41-s − 43-s − 47-s − 53-s + 55-s − 59-s + ⋯ |
L(s) = 1 | − i·5-s + i·11-s + 13-s + 19-s − i·23-s − 25-s + i·29-s + i·31-s − i·37-s − i·41-s − 43-s − 47-s − 53-s + 55-s − 59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2856 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.615 - 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2856 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.615 - 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6382674128 - 1.308117048i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6382674128 - 1.308117048i\) |
\(L(1)\) |
\(\approx\) |
\(1.030780644 - 0.2081568906i\) |
\(L(1)\) |
\(\approx\) |
\(1.030780644 - 0.2081568906i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
| 17 | \( 1 \) |
good | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 13 | \( 1 - iT \) |
| 19 | \( 1 \) |
| 23 | \( 1 \) |
| 29 | \( 1 \) |
| 31 | \( 1 \) |
| 37 | \( 1 + iT \) |
| 41 | \( 1 \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 \) |
| 53 | \( 1 \) |
| 59 | \( 1 \) |
| 61 | \( 1 \) |
| 67 | \( 1 \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 \) |
| 79 | \( 1 \) |
| 83 | \( 1 \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.04350259155210387469606582461, −18.59754326504966725642136250292, −18.00139606927771160997748690447, −17.19735924971810713794316997633, −16.35636082794606903095842735139, −15.676021105178687464445767208135, −15.09543559747064871493650444482, −14.24114826862400162687206758004, −13.5043509013046001567864472023, −13.27077099288747064555497560828, −11.7262072013693717845264719434, −11.502596610431207548647541541941, −10.799523305920070372607583816365, −9.90591122146893173231658396061, −9.346192639273855224358538941244, −8.18571655819844541866446286927, −7.81443538928999259052059214885, −6.75450796250562573608609391725, −6.12497816266200419835880663788, −5.53441550210924362969207628829, −4.369068202254887426661908872241, −3.31534165113142018019201093758, −3.13329463361873496925804551453, −1.870861246599765833432899955303, −0.94068028548101282018276012688,
0.255483636365749693962321389457, 1.294224941774004523402976266549, 1.89147995854238812105401664907, 3.14401932069365511950510396778, 3.95425614451248486028912311316, 4.84991334650559685392153142653, 5.3156013156881497896339884218, 6.34494615488167318032749200303, 7.112379417989166453422015116890, 7.99189326219176594033082499266, 8.69409264809243750234479583631, 9.30976336919169382867180896447, 10.077391148069206690965036957758, 10.89752459946952280826505617706, 11.72448311765797687036511206721, 12.60006295789862133055913872285, 12.78383541086347326526944072825, 13.86855282689577806755137328881, 14.36916577247828930816345579317, 15.45013451831295054300190273699, 15.970055665915522402358835068175, 16.54425239207520863322644964187, 17.37608214120733314983511067500, 18.03755528976506984484603493164, 18.5858930121901638750133404024