L(s) = 1 | − i·5-s + i·11-s + 13-s + 19-s − i·23-s − 25-s + i·29-s + i·31-s − i·37-s − i·41-s − 43-s − 47-s − 53-s + 55-s − 59-s + ⋯ |
L(s) = 1 | − i·5-s + i·11-s + 13-s + 19-s − i·23-s − 25-s + i·29-s + i·31-s − i·37-s − i·41-s − 43-s − 47-s − 53-s + 55-s − 59-s + ⋯ |
Λ(s)=(=(2856s/2ΓR(s+1)L(s)(−0.615−0.788i)Λ(1−s)
Λ(s)=(=(2856s/2ΓR(s+1)L(s)(−0.615−0.788i)Λ(1−s)
Degree: |
1 |
Conductor: |
2856
= 23⋅3⋅7⋅17
|
Sign: |
−0.615−0.788i
|
Analytic conductor: |
306.919 |
Root analytic conductor: |
306.919 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2856(251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 2856, (1: ), −0.615−0.788i)
|
Particular Values
L(21) |
≈ |
0.6382674128−1.308117048i |
L(21) |
≈ |
0.6382674128−1.308117048i |
L(1) |
≈ |
1.030780644−0.2081568906i |
L(1) |
≈ |
1.030780644−0.2081568906i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1 |
| 17 | 1 |
good | 5 | 1 |
| 11 | 1 |
| 13 | 1−iT |
| 19 | 1 |
| 23 | 1 |
| 29 | 1 |
| 31 | 1 |
| 37 | 1+iT |
| 41 | 1 |
| 43 | 1+T |
| 47 | 1 |
| 53 | 1 |
| 59 | 1 |
| 61 | 1 |
| 67 | 1 |
| 71 | 1+T |
| 73 | 1 |
| 79 | 1 |
| 83 | 1 |
| 89 | 1−iT |
| 97 | 1 |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.04350259155210387469606582461, −18.59754326504966725642136250292, −18.00139606927771160997748690447, −17.19735924971810713794316997633, −16.35636082794606903095842735139, −15.676021105178687464445767208135, −15.09543559747064871493650444482, −14.24114826862400162687206758004, −13.5043509013046001567864472023, −13.27077099288747064555497560828, −11.7262072013693717845264719434, −11.502596610431207548647541541941, −10.799523305920070372607583816365, −9.90591122146893173231658396061, −9.346192639273855224358538941244, −8.18571655819844541866446286927, −7.81443538928999259052059214885, −6.75450796250562573608609391725, −6.12497816266200419835880663788, −5.53441550210924362969207628829, −4.369068202254887426661908872241, −3.31534165113142018019201093758, −3.13329463361873496925804551453, −1.870861246599765833432899955303, −0.94068028548101282018276012688,
0.255483636365749693962321389457, 1.294224941774004523402976266549, 1.89147995854238812105401664907, 3.14401932069365511950510396778, 3.95425614451248486028912311316, 4.84991334650559685392153142653, 5.3156013156881497896339884218, 6.34494615488167318032749200303, 7.112379417989166453422015116890, 7.99189326219176594033082499266, 8.69409264809243750234479583631, 9.30976336919169382867180896447, 10.077391148069206690965036957758, 10.89752459946952280826505617706, 11.72448311765797687036511206721, 12.60006295789862133055913872285, 12.78383541086347326526944072825, 13.86855282689577806755137328881, 14.36916577247828930816345579317, 15.45013451831295054300190273699, 15.970055665915522402358835068175, 16.54425239207520863322644964187, 17.37608214120733314983511067500, 18.03755528976506984484603493164, 18.5858930121901638750133404024