Properties

Label 1-28e2-784.355-r0-0-0
Degree 11
Conductor 784784
Sign 0.999+0.00801i0.999 + 0.00801i
Analytic cond. 3.640883.64088
Root an. cond. 3.640883.64088
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.997 + 0.0747i)3-s + (−0.563 + 0.826i)5-s + (0.988 + 0.149i)9-s + (−0.149 − 0.988i)11-s + (0.781 − 0.623i)13-s + (−0.623 + 0.781i)15-s + (−0.955 − 0.294i)17-s + (0.866 − 0.5i)19-s + (0.955 − 0.294i)23-s + (−0.365 − 0.930i)25-s + (0.974 + 0.222i)27-s + (0.974 − 0.222i)29-s + (−0.5 + 0.866i)31-s + (−0.0747 − 0.997i)33-s + (0.680 + 0.733i)37-s + ⋯
L(s)  = 1  + (0.997 + 0.0747i)3-s + (−0.563 + 0.826i)5-s + (0.988 + 0.149i)9-s + (−0.149 − 0.988i)11-s + (0.781 − 0.623i)13-s + (−0.623 + 0.781i)15-s + (−0.955 − 0.294i)17-s + (0.866 − 0.5i)19-s + (0.955 − 0.294i)23-s + (−0.365 − 0.930i)25-s + (0.974 + 0.222i)27-s + (0.974 − 0.222i)29-s + (−0.5 + 0.866i)31-s + (−0.0747 − 0.997i)33-s + (0.680 + 0.733i)37-s + ⋯

Functional equation

Λ(s)=(784s/2ΓR(s)L(s)=((0.999+0.00801i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00801i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(784s/2ΓR(s)L(s)=((0.999+0.00801i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00801i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 784784    =    24722^{4} \cdot 7^{2}
Sign: 0.999+0.00801i0.999 + 0.00801i
Analytic conductor: 3.640883.64088
Root analytic conductor: 3.640883.64088
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ784(355,)\chi_{784} (355, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 784, (0: ), 0.999+0.00801i)(1,\ 784,\ (0:\ ),\ 0.999 + 0.00801i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.999883121+0.008013841519i1.999883121 + 0.008013841519i
L(12)L(\frac12) \approx 1.999883121+0.008013841519i1.999883121 + 0.008013841519i
L(1)L(1) \approx 1.435675967+0.06052251388i1.435675967 + 0.06052251388i
L(1)L(1) \approx 1.435675967+0.06052251388i1.435675967 + 0.06052251388i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
7 1 1
good3 1+(0.997+0.0747i)T 1 + (0.997 + 0.0747i)T
5 1+(0.563+0.826i)T 1 + (-0.563 + 0.826i)T
11 1+(0.1490.988i)T 1 + (-0.149 - 0.988i)T
13 1+(0.7810.623i)T 1 + (0.781 - 0.623i)T
17 1+(0.9550.294i)T 1 + (-0.955 - 0.294i)T
19 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
23 1+(0.9550.294i)T 1 + (0.955 - 0.294i)T
29 1+(0.9740.222i)T 1 + (0.974 - 0.222i)T
31 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
37 1+(0.680+0.733i)T 1 + (0.680 + 0.733i)T
41 1+(0.900+0.433i)T 1 + (-0.900 + 0.433i)T
43 1+(0.4330.900i)T 1 + (0.433 - 0.900i)T
47 1+(0.3650.930i)T 1 + (0.365 - 0.930i)T
53 1+(0.680+0.733i)T 1 + (-0.680 + 0.733i)T
59 1+(0.5630.826i)T 1 + (-0.563 - 0.826i)T
61 1+(0.680+0.733i)T 1 + (0.680 + 0.733i)T
67 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
71 1+(0.222+0.974i)T 1 + (-0.222 + 0.974i)T
73 1+(0.365+0.930i)T 1 + (0.365 + 0.930i)T
79 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
83 1+(0.781+0.623i)T 1 + (0.781 + 0.623i)T
89 1+(0.9880.149i)T 1 + (-0.988 - 0.149i)T
97 1T 1 - T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−22.30456525669599198274779991731, −21.1481806914982702243005710910, −20.66309173080035163215996949061, −19.96816322469962278984304093103, −19.32182860955700525144542296672, −18.423139833082109373105407102866, −17.584965648568363861927692239497, −16.443763210920441685132629552598, −15.73267595793127521094261311773, −15.11669882131897744319965725658, −14.160759192415340422999077716793, −13.24409755954959924347097021348, −12.694946684329103248771115352349, −11.762741273867847889403856016620, −10.743772966196934506885558679, −9.45779076205156148658685873057, −9.08635884117351501035025996570, −8.07945132724292526852664051514, −7.43845223317535555121422266407, −6.42751665093464065617418882026, −4.95689087562723167260815076786, −4.235572003566357158647383506583, −3.39582762574909514767199027201, −2.10942518914987146509871356289, −1.20720994865030490017863231713, 1.00695091794429991258476635533, 2.62721707056593323022442341319, 3.13324512780846378660607061603, 4.000422796001193917301688331353, 5.17642206680205402590156535163, 6.542451623844132077027494019134, 7.19658894616854927541931286488, 8.284924211818377013813854913987, 8.70908215890440434047861697320, 9.88982475381355037721985289465, 10.81982463208725965215027947000, 11.38238709012518699562257977346, 12.65489386460690813958711237216, 13.65296268826921429417782853148, 14.007008013587599478666898434138, 15.20227846473482037708652073397, 15.57432358792472762336151566137, 16.359286265603694322755442693633, 17.78590481142646127683320433214, 18.51542531760716672092999378540, 19.07698475020892917478878173954, 19.99942374226741659087451254079, 20.47954136971685631775119193790, 21.65528126770677281267779842677, 22.10039663844365904301012976755

Graph of the ZZ-function along the critical line