L(s) = 1 | + (0.997 + 0.0747i)3-s + (−0.563 + 0.826i)5-s + (0.988 + 0.149i)9-s + (−0.149 − 0.988i)11-s + (0.781 − 0.623i)13-s + (−0.623 + 0.781i)15-s + (−0.955 − 0.294i)17-s + (0.866 − 0.5i)19-s + (0.955 − 0.294i)23-s + (−0.365 − 0.930i)25-s + (0.974 + 0.222i)27-s + (0.974 − 0.222i)29-s + (−0.5 + 0.866i)31-s + (−0.0747 − 0.997i)33-s + (0.680 + 0.733i)37-s + ⋯ |
L(s) = 1 | + (0.997 + 0.0747i)3-s + (−0.563 + 0.826i)5-s + (0.988 + 0.149i)9-s + (−0.149 − 0.988i)11-s + (0.781 − 0.623i)13-s + (−0.623 + 0.781i)15-s + (−0.955 − 0.294i)17-s + (0.866 − 0.5i)19-s + (0.955 − 0.294i)23-s + (−0.365 − 0.930i)25-s + (0.974 + 0.222i)27-s + (0.974 − 0.222i)29-s + (−0.5 + 0.866i)31-s + (−0.0747 − 0.997i)33-s + (0.680 + 0.733i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00801i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00801i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.999883121 + 0.008013841519i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.999883121 + 0.008013841519i\) |
\(L(1)\) |
\(\approx\) |
\(1.435675967 + 0.06052251388i\) |
\(L(1)\) |
\(\approx\) |
\(1.435675967 + 0.06052251388i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (0.997 + 0.0747i)T \) |
| 5 | \( 1 + (-0.563 + 0.826i)T \) |
| 11 | \( 1 + (-0.149 - 0.988i)T \) |
| 13 | \( 1 + (0.781 - 0.623i)T \) |
| 17 | \( 1 + (-0.955 - 0.294i)T \) |
| 19 | \( 1 + (0.866 - 0.5i)T \) |
| 23 | \( 1 + (0.955 - 0.294i)T \) |
| 29 | \( 1 + (0.974 - 0.222i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (0.680 + 0.733i)T \) |
| 41 | \( 1 + (-0.900 + 0.433i)T \) |
| 43 | \( 1 + (0.433 - 0.900i)T \) |
| 47 | \( 1 + (0.365 - 0.930i)T \) |
| 53 | \( 1 + (-0.680 + 0.733i)T \) |
| 59 | \( 1 + (-0.563 - 0.826i)T \) |
| 61 | \( 1 + (0.680 + 0.733i)T \) |
| 67 | \( 1 + (0.866 + 0.5i)T \) |
| 71 | \( 1 + (-0.222 + 0.974i)T \) |
| 73 | \( 1 + (0.365 + 0.930i)T \) |
| 79 | \( 1 + (0.5 + 0.866i)T \) |
| 83 | \( 1 + (0.781 + 0.623i)T \) |
| 89 | \( 1 + (-0.988 - 0.149i)T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.30456525669599198274779991731, −21.1481806914982702243005710910, −20.66309173080035163215996949061, −19.96816322469962278984304093103, −19.32182860955700525144542296672, −18.423139833082109373105407102866, −17.584965648568363861927692239497, −16.443763210920441685132629552598, −15.73267595793127521094261311773, −15.11669882131897744319965725658, −14.160759192415340422999077716793, −13.24409755954959924347097021348, −12.694946684329103248771115352349, −11.762741273867847889403856016620, −10.743772966196934506885558679, −9.45779076205156148658685873057, −9.08635884117351501035025996570, −8.07945132724292526852664051514, −7.43845223317535555121422266407, −6.42751665093464065617418882026, −4.95689087562723167260815076786, −4.235572003566357158647383506583, −3.39582762574909514767199027201, −2.10942518914987146509871356289, −1.20720994865030490017863231713,
1.00695091794429991258476635533, 2.62721707056593323022442341319, 3.13324512780846378660607061603, 4.000422796001193917301688331353, 5.17642206680205402590156535163, 6.542451623844132077027494019134, 7.19658894616854927541931286488, 8.284924211818377013813854913987, 8.70908215890440434047861697320, 9.88982475381355037721985289465, 10.81982463208725965215027947000, 11.38238709012518699562257977346, 12.65489386460690813958711237216, 13.65296268826921429417782853148, 14.007008013587599478666898434138, 15.20227846473482037708652073397, 15.57432358792472762336151566137, 16.359286265603694322755442693633, 17.78590481142646127683320433214, 18.51542531760716672092999378540, 19.07698475020892917478878173954, 19.99942374226741659087451254079, 20.47954136971685631775119193790, 21.65528126770677281267779842677, 22.10039663844365904301012976755