L(s) = 1 | + (0.0348 − 0.999i)2-s + (−0.997 − 0.0697i)4-s + (−0.882 − 0.469i)5-s + (−0.241 + 0.970i)7-s + (−0.104 + 0.994i)8-s + (−0.5 + 0.866i)10-s + (−0.615 − 0.788i)13-s + (0.961 + 0.275i)14-s + (0.990 + 0.139i)16-s + (0.669 + 0.743i)17-s + (−0.104 + 0.994i)19-s + (0.848 + 0.529i)20-s + (0.766 + 0.642i)23-s + (0.559 + 0.829i)25-s + (−0.809 + 0.587i)26-s + ⋯ |
L(s) = 1 | + (0.0348 − 0.999i)2-s + (−0.997 − 0.0697i)4-s + (−0.882 − 0.469i)5-s + (−0.241 + 0.970i)7-s + (−0.104 + 0.994i)8-s + (−0.5 + 0.866i)10-s + (−0.615 − 0.788i)13-s + (0.961 + 0.275i)14-s + (0.990 + 0.139i)16-s + (0.669 + 0.743i)17-s + (−0.104 + 0.994i)19-s + (0.848 + 0.529i)20-s + (0.766 + 0.642i)23-s + (0.559 + 0.829i)25-s + (−0.809 + 0.587i)26-s + ⋯ |
Λ(s)=(=(297s/2ΓR(s)L(s)(0.999+0.0354i)Λ(1−s)
Λ(s)=(=(297s/2ΓR(s)L(s)(0.999+0.0354i)Λ(1−s)
Degree: |
1 |
Conductor: |
297
= 33⋅11
|
Sign: |
0.999+0.0354i
|
Analytic conductor: |
1.37926 |
Root analytic conductor: |
1.37926 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ297(268,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 297, (0: ), 0.999+0.0354i)
|
Particular Values
L(21) |
≈ |
0.7479620610+0.01324384631i |
L(21) |
≈ |
0.7479620610+0.01324384631i |
L(1) |
≈ |
0.7443362444−0.2279822233i |
L(1) |
≈ |
0.7443362444−0.2279822233i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1+(0.0348−0.999i)T |
| 5 | 1+(−0.882−0.469i)T |
| 7 | 1+(−0.241+0.970i)T |
| 13 | 1+(−0.615−0.788i)T |
| 17 | 1+(0.669+0.743i)T |
| 19 | 1+(−0.104+0.994i)T |
| 23 | 1+(0.766+0.642i)T |
| 29 | 1+(0.961−0.275i)T |
| 31 | 1+(−0.374+0.927i)T |
| 37 | 1+(−0.104−0.994i)T |
| 41 | 1+(0.961+0.275i)T |
| 43 | 1+(0.173+0.984i)T |
| 47 | 1+(−0.997+0.0697i)T |
| 53 | 1+(0.309+0.951i)T |
| 59 | 1+(0.438+0.898i)T |
| 61 | 1+(−0.374−0.927i)T |
| 67 | 1+(−0.939+0.342i)T |
| 71 | 1+(0.669+0.743i)T |
| 73 | 1+(0.913+0.406i)T |
| 79 | 1+(0.0348−0.999i)T |
| 83 | 1+(−0.615+0.788i)T |
| 89 | 1+(−0.5−0.866i)T |
| 97 | 1+(−0.882+0.469i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−25.5640120085361084955635507789, −24.228456161037965634263430728541, −23.753990342476348409206837436128, −22.84525296526279630930959973969, −22.273754364165100094617191454990, −20.98245860703656731037826949130, −19.681921144297032052447652170184, −19.036497089840759961930076418809, −18.03922760807063586956948250697, −16.90450576010565115164676357536, −16.336185711987717396633436177446, −15.3311696215281447640001472590, −14.459310825830508264403761258869, −13.707736589172181757491936841084, −12.57498043227574308503171139977, −11.430217830325232957051833718774, −10.261147028103086893602552487903, −9.23176455398060739621377492607, −8.03221382635156148804785851843, −7.10452708774550360982968640951, −6.66412975674172328970550407833, −4.95720796345430480098226252075, −4.17137552622937941194501057109, −3.017098471593200146150874438120, −0.56792444518601671767075195649,
1.268473822121491176647427472317, 2.77231484948169774999109422198, 3.68053190497902183002308369365, 4.91605186486912569594216054104, 5.81138551983959680727410641876, 7.710640995051449788938501025207, 8.50234235446584878453458758251, 9.4747750905747668978434836816, 10.515564533074852001099209983893, 11.60107079208375192434923746109, 12.49745842976142148767407289711, 12.77842804184543438601337782857, 14.396940397878947668090784374771, 15.1776947039788130241949998037, 16.28263930468989700863714597031, 17.42100328861163431605858486733, 18.41602908851716668048342327659, 19.42148315866188758351064806886, 19.712123107631084818187241954035, 21.03656957129755910018446174533, 21.55488878008554730469383833651, 22.8177757914881226810897118851, 23.213926910880777722485455159025, 24.47550385100345992735057420505, 25.3483696267042649418288764985