Properties

Label 1-297-297.268-r0-0-0
Degree 11
Conductor 297297
Sign 0.999+0.0354i0.999 + 0.0354i
Analytic cond. 1.379261.37926
Root an. cond. 1.379261.37926
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0348 − 0.999i)2-s + (−0.997 − 0.0697i)4-s + (−0.882 − 0.469i)5-s + (−0.241 + 0.970i)7-s + (−0.104 + 0.994i)8-s + (−0.5 + 0.866i)10-s + (−0.615 − 0.788i)13-s + (0.961 + 0.275i)14-s + (0.990 + 0.139i)16-s + (0.669 + 0.743i)17-s + (−0.104 + 0.994i)19-s + (0.848 + 0.529i)20-s + (0.766 + 0.642i)23-s + (0.559 + 0.829i)25-s + (−0.809 + 0.587i)26-s + ⋯
L(s)  = 1  + (0.0348 − 0.999i)2-s + (−0.997 − 0.0697i)4-s + (−0.882 − 0.469i)5-s + (−0.241 + 0.970i)7-s + (−0.104 + 0.994i)8-s + (−0.5 + 0.866i)10-s + (−0.615 − 0.788i)13-s + (0.961 + 0.275i)14-s + (0.990 + 0.139i)16-s + (0.669 + 0.743i)17-s + (−0.104 + 0.994i)19-s + (0.848 + 0.529i)20-s + (0.766 + 0.642i)23-s + (0.559 + 0.829i)25-s + (−0.809 + 0.587i)26-s + ⋯

Functional equation

Λ(s)=(297s/2ΓR(s)L(s)=((0.999+0.0354i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0354i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(297s/2ΓR(s)L(s)=((0.999+0.0354i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0354i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 297297    =    33113^{3} \cdot 11
Sign: 0.999+0.0354i0.999 + 0.0354i
Analytic conductor: 1.379261.37926
Root analytic conductor: 1.379261.37926
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ297(268,)\chi_{297} (268, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 297, (0: ), 0.999+0.0354i)(1,\ 297,\ (0:\ ),\ 0.999 + 0.0354i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.7479620610+0.01324384631i0.7479620610 + 0.01324384631i
L(12)L(\frac12) \approx 0.7479620610+0.01324384631i0.7479620610 + 0.01324384631i
L(1)L(1) \approx 0.74433624440.2279822233i0.7443362444 - 0.2279822233i
L(1)L(1) \approx 0.74433624440.2279822233i0.7443362444 - 0.2279822233i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
11 1 1
good2 1+(0.03480.999i)T 1 + (0.0348 - 0.999i)T
5 1+(0.8820.469i)T 1 + (-0.882 - 0.469i)T
7 1+(0.241+0.970i)T 1 + (-0.241 + 0.970i)T
13 1+(0.6150.788i)T 1 + (-0.615 - 0.788i)T
17 1+(0.669+0.743i)T 1 + (0.669 + 0.743i)T
19 1+(0.104+0.994i)T 1 + (-0.104 + 0.994i)T
23 1+(0.766+0.642i)T 1 + (0.766 + 0.642i)T
29 1+(0.9610.275i)T 1 + (0.961 - 0.275i)T
31 1+(0.374+0.927i)T 1 + (-0.374 + 0.927i)T
37 1+(0.1040.994i)T 1 + (-0.104 - 0.994i)T
41 1+(0.961+0.275i)T 1 + (0.961 + 0.275i)T
43 1+(0.173+0.984i)T 1 + (0.173 + 0.984i)T
47 1+(0.997+0.0697i)T 1 + (-0.997 + 0.0697i)T
53 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
59 1+(0.438+0.898i)T 1 + (0.438 + 0.898i)T
61 1+(0.3740.927i)T 1 + (-0.374 - 0.927i)T
67 1+(0.939+0.342i)T 1 + (-0.939 + 0.342i)T
71 1+(0.669+0.743i)T 1 + (0.669 + 0.743i)T
73 1+(0.913+0.406i)T 1 + (0.913 + 0.406i)T
79 1+(0.03480.999i)T 1 + (0.0348 - 0.999i)T
83 1+(0.615+0.788i)T 1 + (-0.615 + 0.788i)T
89 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
97 1+(0.882+0.469i)T 1 + (-0.882 + 0.469i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−25.5640120085361084955635507789, −24.228456161037965634263430728541, −23.753990342476348409206837436128, −22.84525296526279630930959973969, −22.273754364165100094617191454990, −20.98245860703656731037826949130, −19.681921144297032052447652170184, −19.036497089840759961930076418809, −18.03922760807063586956948250697, −16.90450576010565115164676357536, −16.336185711987717396633436177446, −15.3311696215281447640001472590, −14.459310825830508264403761258869, −13.707736589172181757491936841084, −12.57498043227574308503171139977, −11.430217830325232957051833718774, −10.261147028103086893602552487903, −9.23176455398060739621377492607, −8.03221382635156148804785851843, −7.10452708774550360982968640951, −6.66412975674172328970550407833, −4.95720796345430480098226252075, −4.17137552622937941194501057109, −3.017098471593200146150874438120, −0.56792444518601671767075195649, 1.268473822121491176647427472317, 2.77231484948169774999109422198, 3.68053190497902183002308369365, 4.91605186486912569594216054104, 5.81138551983959680727410641876, 7.710640995051449788938501025207, 8.50234235446584878453458758251, 9.4747750905747668978434836816, 10.515564533074852001099209983893, 11.60107079208375192434923746109, 12.49745842976142148767407289711, 12.77842804184543438601337782857, 14.396940397878947668090784374771, 15.1776947039788130241949998037, 16.28263930468989700863714597031, 17.42100328861163431605858486733, 18.41602908851716668048342327659, 19.42148315866188758351064806886, 19.712123107631084818187241954035, 21.03656957129755910018446174533, 21.55488878008554730469383833651, 22.8177757914881226810897118851, 23.213926910880777722485455159025, 24.47550385100345992735057420505, 25.3483696267042649418288764985

Graph of the ZZ-function along the critical line