L(s) = 1 | + 3-s − 5-s − 7-s + 9-s + 11-s − 13-s − 15-s + 17-s + 19-s − 21-s − 23-s + 25-s + 27-s − 29-s − 31-s + 33-s + 35-s − 37-s − 39-s + 41-s + 43-s − 45-s − 47-s + 49-s + 51-s − 53-s − 55-s + ⋯ |
L(s) = 1 | + 3-s − 5-s − 7-s + 9-s + 11-s − 13-s − 15-s + 17-s + 19-s − 21-s − 23-s + 25-s + 27-s − 29-s − 31-s + 33-s + 35-s − 37-s − 39-s + 41-s + 43-s − 45-s − 47-s + 49-s + 51-s − 53-s − 55-s + ⋯ |
Λ(s)=(=(8s/2ΓR(s+1)L(s)Λ(1−s)
Λ(s)=(=(8s/2ΓR(s+1)L(s)Λ(1−s)
Degree: |
1 |
Conductor: |
8
= 23
|
Sign: |
1
|
Analytic conductor: |
0.859719 |
Root analytic conductor: |
0.859719 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ8(3,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(1, 8, (1: ), 1)
|
Particular Values
L(21) |
≈ |
1.100421409 |
L(21) |
≈ |
1.100421409 |
L(1) |
≈ |
1.110720734 |
L(1) |
≈ |
1.110720734 |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1+T |
| 5 | 1−T |
| 7 | 1−T |
| 11 | 1+T |
| 13 | 1−T |
| 17 | 1+T |
| 19 | 1+T |
| 23 | 1−T |
| 29 | 1−T |
| 31 | 1−T |
| 37 | 1−T |
| 41 | 1+T |
| 43 | 1+T |
| 47 | 1−T |
| 53 | 1−T |
| 59 | 1+T |
| 61 | 1−T |
| 67 | 1+T |
| 71 | 1−T |
| 73 | 1+T |
| 79 | 1−T |
| 83 | 1+T |
| 89 | 1+T |
| 97 | 1+T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−48.74068793215534022752522930410, −47.6209798877567549178563249871, −45.9510335880281704577596028993, −43.9346152766520649240665150339, −42.752615477159649672801727607675, −41.53981595511799883077360485981, −39.16750681241490296713715528102, −38.0617400808002403731726223796, −36.23116033995471923810665296105, −34.98256753712872018308348058124, −32.53233400657462120871686846132, −31.45201345414038079725886531059, −29.857791921026421623346922599858, −27.5181259144140394812087660182, −26.089470593190540959426835382352, −24.41964822006060936671535842043, −22.37466756829608885834718488552, −20.07363842306806925540295209504, −19.08644166006480394769355338242, −16.16469366756340984309856870967, −14.49097192816054725085740936823, −12.3405011590722115530614093056, −9.50320196197290897854598873093, −7.43447295737022101391739084615, −3.57615483678758907557757872995,
3.57615483678758907557757872995, 7.43447295737022101391739084615, 9.50320196197290897854598873093, 12.3405011590722115530614093056, 14.49097192816054725085740936823, 16.16469366756340984309856870967, 19.08644166006480394769355338242, 20.07363842306806925540295209504, 22.37466756829608885834718488552, 24.41964822006060936671535842043, 26.089470593190540959426835382352, 27.5181259144140394812087660182, 29.857791921026421623346922599858, 31.45201345414038079725886531059, 32.53233400657462120871686846132, 34.98256753712872018308348058124, 36.23116033995471923810665296105, 38.0617400808002403731726223796, 39.16750681241490296713715528102, 41.53981595511799883077360485981, 42.752615477159649672801727607675, 43.9346152766520649240665150339, 45.9510335880281704577596028993, 47.6209798877567549178563249871, 48.74068793215534022752522930410