L(s) = 1 | + (−0.671 + 0.740i)3-s + (0.970 + 0.242i)5-s + (0.773 − 0.634i)7-s + (−0.0980 − 0.995i)9-s + (−0.427 + 0.903i)11-s + (−0.514 + 0.857i)13-s + (−0.831 + 0.555i)15-s + (0.831 + 0.555i)17-s + (0.803 − 0.595i)19-s + (−0.0490 + 0.998i)21-s + (−0.956 − 0.290i)23-s + (0.881 + 0.471i)25-s + (0.803 + 0.595i)27-s + (0.336 − 0.941i)29-s + (−0.382 + 0.923i)31-s + ⋯ |
L(s) = 1 | + (−0.671 + 0.740i)3-s + (0.970 + 0.242i)5-s + (0.773 − 0.634i)7-s + (−0.0980 − 0.995i)9-s + (−0.427 + 0.903i)11-s + (−0.514 + 0.857i)13-s + (−0.831 + 0.555i)15-s + (0.831 + 0.555i)17-s + (0.803 − 0.595i)19-s + (−0.0490 + 0.998i)21-s + (−0.956 − 0.290i)23-s + (0.881 + 0.471i)25-s + (0.803 + 0.595i)27-s + (0.336 − 0.941i)29-s + (−0.382 + 0.923i)31-s + ⋯ |
Λ(s)=(=(512s/2ΓR(s)L(s)(0.460+0.887i)Λ(1−s)
Λ(s)=(=(512s/2ΓR(s)L(s)(0.460+0.887i)Λ(1−s)
Degree: |
1 |
Conductor: |
512
= 29
|
Sign: |
0.460+0.887i
|
Analytic conductor: |
2.37771 |
Root analytic conductor: |
2.37771 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ512(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 512, (0: ), 0.460+0.887i)
|
Particular Values
L(21) |
≈ |
1.169800123+0.7109437973i |
L(21) |
≈ |
1.169800123+0.7109437973i |
L(1) |
≈ |
1.044958669+0.3220602301i |
L(1) |
≈ |
1.044958669+0.3220602301i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1+(−0.671+0.740i)T |
| 5 | 1+(0.970+0.242i)T |
| 7 | 1+(0.773−0.634i)T |
| 11 | 1+(−0.427+0.903i)T |
| 13 | 1+(−0.514+0.857i)T |
| 17 | 1+(0.831+0.555i)T |
| 19 | 1+(0.803−0.595i)T |
| 23 | 1+(−0.956−0.290i)T |
| 29 | 1+(0.336−0.941i)T |
| 31 | 1+(−0.382+0.923i)T |
| 37 | 1+(0.989−0.146i)T |
| 41 | 1+(0.881−0.471i)T |
| 43 | 1+(−0.740+0.671i)T |
| 47 | 1+(−0.195−0.980i)T |
| 53 | 1+(0.336+0.941i)T |
| 59 | 1+(0.514+0.857i)T |
| 61 | 1+(0.0490+0.998i)T |
| 67 | 1+(−0.998+0.0490i)T |
| 71 | 1+(−0.995−0.0980i)T |
| 73 | 1+(0.773+0.634i)T |
| 79 | 1+(0.980+0.195i)T |
| 83 | 1+(0.989+0.146i)T |
| 89 | 1+(−0.956+0.290i)T |
| 97 | 1+(0.923+0.382i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−23.67753933801928263577344230619, −22.41074143276344449078136504519, −21.91610896044978019596436690523, −21.025876062138671082856536813, −20.14907314278156148901896138521, −18.88684899557718651988077598946, −18.14015783053698222120333579683, −17.795086374848051276983838911509, −16.69487819601179032771610993875, −16.07253419541625476823472561348, −14.61330434260269654881151742812, −13.916942736798720315774690079489, −13.022735579462874948057249680490, −12.21202465797917428759126271686, −11.40351753320080886121897880439, −10.42366135944965152099819250966, −9.4904727192019272235912843034, −8.16985132175867897852749249258, −7.64985730930116011246995987921, −6.165445305591981114297525936775, −5.53004623540397006579907112987, −4.998599531093023522747520453836, −3.00972354616459021026671988077, −1.99585084502382396322124773023, −0.92675586304239397942345352572,
1.29918185016668184763441681231, 2.50615982154721299732061965282, 4.028822782475792947047068127094, 4.84017288812689189082004552874, 5.662327658869981409400894335721, 6.73346416164682696318543699378, 7.66608167112840759840013973358, 9.10771287400397727317235491037, 10.00849888965134188821028327983, 10.41662296042889896906719392041, 11.51413689871643229974565093971, 12.31361412490509882415801394326, 13.55490473169007162445260077876, 14.4378763906023031829986102749, 15.033679242778571565702838647674, 16.310760332185090960261045987050, 16.93925443744474895722501381210, 17.8460957206994635636421488830, 18.13762181656418803301793357847, 19.70838459594434994531721694234, 20.65735731726078983504345337408, 21.31325689790889715701249495634, 21.88149244413785455059575007969, 22.86990333886266964331996008012, 23.61134951614308744490241541304