Properties

Label 1-300-300.227-r1-0-0
Degree 11
Conductor 300300
Sign 0.4810.876i-0.481 - 0.876i
Analytic cond. 32.239432.2394
Root an. cond. 32.239432.2394
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·7-s + (0.309 − 0.951i)11-s + (0.951 − 0.309i)13-s + (0.587 + 0.809i)17-s + (−0.809 + 0.587i)19-s + (−0.951 − 0.309i)23-s + (−0.809 − 0.587i)29-s + (0.809 − 0.587i)31-s + (−0.951 + 0.309i)37-s + (−0.309 − 0.951i)41-s i·43-s + (0.587 − 0.809i)47-s − 49-s + (0.587 − 0.809i)53-s + (−0.309 − 0.951i)59-s + ⋯
L(s)  = 1  i·7-s + (0.309 − 0.951i)11-s + (0.951 − 0.309i)13-s + (0.587 + 0.809i)17-s + (−0.809 + 0.587i)19-s + (−0.951 − 0.309i)23-s + (−0.809 − 0.587i)29-s + (0.809 − 0.587i)31-s + (−0.951 + 0.309i)37-s + (−0.309 − 0.951i)41-s i·43-s + (0.587 − 0.809i)47-s − 49-s + (0.587 − 0.809i)53-s + (−0.309 − 0.951i)59-s + ⋯

Functional equation

Λ(s)=(300s/2ΓR(s+1)L(s)=((0.4810.876i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.481 - 0.876i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(300s/2ΓR(s+1)L(s)=((0.4810.876i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.481 - 0.876i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 300300    =    223522^{2} \cdot 3 \cdot 5^{2}
Sign: 0.4810.876i-0.481 - 0.876i
Analytic conductor: 32.239432.2394
Root analytic conductor: 32.239432.2394
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ300(227,)\chi_{300} (227, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 300, (1: ), 0.4810.876i)(1,\ 300,\ (1:\ ),\ -0.481 - 0.876i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.72873497681.232223551i0.7287349768 - 1.232223551i
L(12)L(\frac12) \approx 0.72873497681.232223551i0.7287349768 - 1.232223551i
L(1)L(1) \approx 0.99189237110.3033339400i0.9918923711 - 0.3033339400i
L(1)L(1) \approx 0.99189237110.3033339400i0.9918923711 - 0.3033339400i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
5 1 1
good7 1iT 1 - iT
11 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
13 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
17 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
19 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
23 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
29 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
31 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
37 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
41 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
43 1iT 1 - iT
47 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
53 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
59 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
61 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
67 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
71 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
73 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
79 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
83 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
89 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
97 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−25.529874322748590609203721998902, −24.65660949564244369897319137419, −23.59215771068355355284885392738, −22.76310028379643518941561877378, −21.83874921740595259226296519866, −20.99231980102785227953684658087, −20.09089289650605384572746410463, −18.99376486997275328623408244513, −18.2434070762270591973394848871, −17.38796381544082580073647527500, −16.16127961321185845406996503937, −15.423206853575468975049666955946, −14.49748140753941866904480277882, −13.44608337850967733507871827239, −12.31229608227481125379731427153, −11.68358240374398512123709599821, −10.4545840271834610101345610676, −9.32320377791901151636869602633, −8.598477250215704909922861848138, −7.3123930146541023780913195613, −6.249263758831091230374464214243, −5.20306979334760439097267454879, −4.02166891898858807312595784202, −2.6596875478104846832711175271, −1.49968878264335317125558423657, 0.43255215067138580390200831944, 1.69700042672693662672776545161, 3.47371478448214193458317766406, 4.11165578074757123100971357866, 5.74040073014098977228741826452, 6.51196554912334982984063234768, 7.900070595354452002405857955685, 8.56131966570616164568276272575, 10.040841146439055734780463553841, 10.719375211831826437560516384101, 11.73083526288977193859543009387, 12.97375551491311973036434690033, 13.76033765840412299073321908920, 14.60945625296325636863719938569, 15.81803144255728583458092170496, 16.73001317944069673408874302230, 17.38017237526214586830746626442, 18.67874833011451171937616919809, 19.337245280291960238877596861442, 20.47622781307879110892938126175, 21.1051660772030277322165794800, 22.223130612093949018391664993926, 23.1685029510597095458103962612, 23.864715372902598706430686841766, 24.78044708017380053143247628432

Graph of the ZZ-function along the critical line