L(s) = 1 | + (−0.984 − 0.173i)5-s + (−0.984 + 0.173i)11-s + (0.642 − 0.766i)13-s − 17-s + i·19-s + (−0.766 − 0.642i)23-s + (0.939 + 0.342i)25-s + (0.642 + 0.766i)29-s + (0.939 − 0.342i)31-s + (0.866 − 0.5i)37-s + (0.766 + 0.642i)41-s + (−0.342 + 0.939i)43-s + (−0.939 − 0.342i)47-s + (−0.866 + 0.5i)53-s + 55-s + ⋯ |
L(s) = 1 | + (−0.984 − 0.173i)5-s + (−0.984 + 0.173i)11-s + (0.642 − 0.766i)13-s − 17-s + i·19-s + (−0.766 − 0.642i)23-s + (0.939 + 0.342i)25-s + (0.642 + 0.766i)29-s + (0.939 − 0.342i)31-s + (0.866 − 0.5i)37-s + (0.766 + 0.642i)41-s + (−0.342 + 0.939i)43-s + (−0.939 − 0.342i)47-s + (−0.866 + 0.5i)53-s + 55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.00934 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.00934 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5260474613 - 0.5211534104i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5260474613 - 0.5211534104i\) |
\(L(1)\) |
\(\approx\) |
\(0.7694770126 - 0.06932174524i\) |
\(L(1)\) |
\(\approx\) |
\(0.7694770126 - 0.06932174524i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-0.984 - 0.173i)T \) |
| 11 | \( 1 + (-0.984 + 0.173i)T \) |
| 13 | \( 1 + (0.642 - 0.766i)T \) |
| 17 | \( 1 - T \) |
| 19 | \( 1 + iT \) |
| 23 | \( 1 + (-0.766 - 0.642i)T \) |
| 29 | \( 1 + (0.642 + 0.766i)T \) |
| 31 | \( 1 + (0.939 - 0.342i)T \) |
| 37 | \( 1 + (0.866 - 0.5i)T \) |
| 41 | \( 1 + (0.766 + 0.642i)T \) |
| 43 | \( 1 + (-0.342 + 0.939i)T \) |
| 47 | \( 1 + (-0.939 - 0.342i)T \) |
| 53 | \( 1 + (-0.866 + 0.5i)T \) |
| 59 | \( 1 + (-0.642 + 0.766i)T \) |
| 61 | \( 1 + (-0.342 + 0.939i)T \) |
| 67 | \( 1 + (0.984 + 0.173i)T \) |
| 71 | \( 1 + (0.5 - 0.866i)T \) |
| 73 | \( 1 + (0.5 - 0.866i)T \) |
| 79 | \( 1 + (-0.173 - 0.984i)T \) |
| 83 | \( 1 + (-0.642 - 0.766i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (-0.939 - 0.342i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.15591431993994519990720602550, −18.65000118358142040700043216514, −17.86817793097018251520651836769, −17.22126922817193980714801459101, −16.13778678117876819577332542642, −15.64316945003765996818583964342, −15.41435469659408903475133700101, −14.21546368033414815850684596146, −13.63411834525111220828931882183, −12.923323194241633680623561333174, −12.083805829286930260804927395638, −11.2100901543170642853188751283, −11.076227607922065142484609691027, −9.98887146064680086292000165641, −9.17620649496739047833160845233, −8.23299176590530627557693665486, −7.95440726680042641993681779023, −6.81607320420757147355631157596, −6.429759969909903860264721860880, −5.22168102149074392184974777277, −4.4888765227505031375846436015, −3.82965018928516658481474762309, −2.87828642555568581292003973248, −2.1471757167950533191727449065, −0.82415586341598238757615385219,
0.30005637657573140148960698766, 1.42603689141597268675356974772, 2.623119832798206510559965808312, 3.27643228154961462189789853301, 4.29909959619282261857515276616, 4.75110051200409950398828098736, 5.8478366823118888445183605656, 6.497471018920463504031350784999, 7.59615836985299271650624211486, 8.07662503588959866826009384166, 8.58779581572824018996022452604, 9.65965498571629454588263769650, 10.526234255168649374329483144927, 10.984942591189437563813033191223, 11.8441575237061902576452465982, 12.6067953062971181449684608844, 13.06734689653009220800037633926, 13.949612637985067051233883268811, 14.8945098732340163793926681090, 15.38331357128679246300077439180, 16.205638257129757946931910446910, 16.407168669857652002962724430835, 17.742296975055106206046959142414, 18.14165708999182111822817633967, 18.81531344841295256990839649810