L(s) = 1 | + (−0.995 + 0.0896i)2-s + (0.983 + 0.178i)3-s + (0.983 − 0.178i)4-s + (0.858 + 0.512i)5-s + (−0.995 − 0.0896i)6-s + (0.473 − 0.880i)7-s + (−0.963 + 0.266i)8-s + (0.936 + 0.351i)9-s + (−0.900 − 0.433i)10-s + 12-s + (−0.550 + 0.834i)13-s + (−0.393 + 0.919i)14-s + (0.753 + 0.657i)15-s + (0.936 − 0.351i)16-s + (0.309 − 0.951i)17-s + (−0.963 − 0.266i)18-s + ⋯ |
L(s) = 1 | + (−0.995 + 0.0896i)2-s + (0.983 + 0.178i)3-s + (0.983 − 0.178i)4-s + (0.858 + 0.512i)5-s + (−0.995 − 0.0896i)6-s + (0.473 − 0.880i)7-s + (−0.963 + 0.266i)8-s + (0.936 + 0.351i)9-s + (−0.900 − 0.433i)10-s + 12-s + (−0.550 + 0.834i)13-s + (−0.393 + 0.919i)14-s + (0.753 + 0.657i)15-s + (0.936 − 0.351i)16-s + (0.309 − 0.951i)17-s + (−0.963 − 0.266i)18-s + ⋯ |
Λ(s)=(=(319s/2ΓR(s)L(s)(0.944+0.329i)Λ(1−s)
Λ(s)=(=(319s/2ΓR(s)L(s)(0.944+0.329i)Λ(1−s)
Degree: |
1 |
Conductor: |
319
= 11⋅29
|
Sign: |
0.944+0.329i
|
Analytic conductor: |
1.48142 |
Root analytic conductor: |
1.48142 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ319(169,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 319, (0: ), 0.944+0.329i)
|
Particular Values
L(21) |
≈ |
1.396700481+0.2365383534i |
L(21) |
≈ |
1.396700481+0.2365383534i |
L(1) |
≈ |
1.149867152+0.1305880229i |
L(1) |
≈ |
1.149867152+0.1305880229i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1 |
| 29 | 1 |
good | 2 | 1+(−0.995+0.0896i)T |
| 3 | 1+(0.983+0.178i)T |
| 5 | 1+(0.858+0.512i)T |
| 7 | 1+(0.473−0.880i)T |
| 13 | 1+(−0.550+0.834i)T |
| 17 | 1+(0.309−0.951i)T |
| 19 | 1+(0.473+0.880i)T |
| 23 | 1+(−0.222−0.974i)T |
| 31 | 1+(−0.995+0.0896i)T |
| 37 | 1+(−0.0448+0.998i)T |
| 41 | 1+(−0.809−0.587i)T |
| 43 | 1+(−0.222−0.974i)T |
| 47 | 1+(−0.0448−0.998i)T |
| 53 | 1+(−0.995+0.0896i)T |
| 59 | 1+(−0.809+0.587i)T |
| 61 | 1+(0.134+0.990i)T |
| 67 | 1+(0.623−0.781i)T |
| 71 | 1+(0.936−0.351i)T |
| 73 | 1+(0.753+0.657i)T |
| 79 | 1+(0.936+0.351i)T |
| 83 | 1+(−0.691+0.722i)T |
| 89 | 1+(−0.222+0.974i)T |
| 97 | 1+(0.134−0.990i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−25.3016217590687438044692002791, −24.55187755032580899137878666125, −23.9459391865250526973600517298, −21.765735641994392836775319469215, −21.47997005678744848862755112728, −20.37686154122825209456431024563, −19.79613229574075910696844761804, −18.79678840967849339426768925969, −17.87874753504573115518395852629, −17.375002241748960251949422288570, −16.01561507009324372277235619431, −15.17726774871349899441512686424, −14.35542897927129127473092806788, −12.98633567791526493000406326616, −12.37193035588176727213149548529, −11.0206649497037316016009999556, −9.75763597260754743398852804772, −9.28078603605351988052463695768, −8.31153918707000889593172860393, −7.61689104540458570394770028626, −6.23580726772379885958374688091, −5.13673343191472403190645370987, −3.25013411958641997846080051288, −2.22237919723525454571296753460, −1.40219991784540769690227806909,
1.486229296521182660425730720211, 2.3643750230742031439067178924, 3.56426224938052368867006258988, 5.123780905546805631578508619603, 6.738568211523039627253289222809, 7.34067873878773445073218512827, 8.37886539975332649891586465175, 9.47758557203473865080070022725, 10.05301496404914437774125212111, 10.88693356094751533676674676764, 12.18537672335958991174516047516, 13.77536346592574175897866253529, 14.25414668640404660036874389124, 15.11093133292522532752226535979, 16.447037566089139141502125345201, 16.99035385536220683869999633278, 18.342272338827547567451052024114, 18.64451714702623699981612560442, 19.90473653859569751954194904360, 20.59306748054923091898353000570, 21.21786718557113647446543771104, 22.32234345404203014497600816404, 23.83681271933273367741267522758, 24.64379447335672033374584371061, 25.41829670367451488721447803077