L(s) = 1 | + (0.826 + 0.563i)3-s + (−0.0747 + 0.997i)5-s + (0.365 + 0.930i)9-s + (0.365 − 0.930i)11-s + (0.623 + 0.781i)13-s + (−0.623 + 0.781i)15-s + (0.5 − 0.866i)19-s + (−0.733 − 0.680i)23-s + (−0.988 − 0.149i)25-s + (−0.222 + 0.974i)27-s + (0.222 + 0.974i)29-s + (−0.5 − 0.866i)31-s + (0.826 − 0.563i)33-s + (−0.955 − 0.294i)37-s + (0.0747 + 0.997i)39-s + ⋯ |
L(s) = 1 | + (0.826 + 0.563i)3-s + (−0.0747 + 0.997i)5-s + (0.365 + 0.930i)9-s + (0.365 − 0.930i)11-s + (0.623 + 0.781i)13-s + (−0.623 + 0.781i)15-s + (0.5 − 0.866i)19-s + (−0.733 − 0.680i)23-s + (−0.988 − 0.149i)25-s + (−0.222 + 0.974i)27-s + (0.222 + 0.974i)29-s + (−0.5 − 0.866i)31-s + (0.826 − 0.563i)33-s + (−0.955 − 0.294i)37-s + (0.0747 + 0.997i)39-s + ⋯ |
Λ(s)=(=(3332s/2ΓR(s+1)L(s)(−0.672+0.740i)Λ(1−s)
Λ(s)=(=(3332s/2ΓR(s+1)L(s)(−0.672+0.740i)Λ(1−s)
Degree: |
1 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
−0.672+0.740i
|
Analytic conductor: |
358.073 |
Root analytic conductor: |
358.073 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(2923,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3332, (1: ), −0.672+0.740i)
|
Particular Values
L(21) |
≈ |
1.218106272+2.751723287i |
L(21) |
≈ |
1.218106272+2.751723287i |
L(1) |
≈ |
1.318822947+0.6073960206i |
L(1) |
≈ |
1.318822947+0.6073960206i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 17 | 1 |
good | 3 | 1+(0.826+0.563i)T |
| 5 | 1+(−0.0747+0.997i)T |
| 11 | 1+(0.365−0.930i)T |
| 13 | 1+(0.623+0.781i)T |
| 19 | 1+(0.5−0.866i)T |
| 23 | 1+(−0.733−0.680i)T |
| 29 | 1+(0.222+0.974i)T |
| 31 | 1+(−0.5−0.866i)T |
| 37 | 1+(−0.955−0.294i)T |
| 41 | 1+(0.900−0.433i)T |
| 43 | 1+(0.900+0.433i)T |
| 47 | 1+(0.988−0.149i)T |
| 53 | 1+(0.955−0.294i)T |
| 59 | 1+(−0.0747−0.997i)T |
| 61 | 1+(−0.955−0.294i)T |
| 67 | 1+(0.5+0.866i)T |
| 71 | 1+(−0.222+0.974i)T |
| 73 | 1+(0.988+0.149i)T |
| 79 | 1+(−0.5+0.866i)T |
| 83 | 1+(−0.623+0.781i)T |
| 89 | 1+(0.365+0.930i)T |
| 97 | 1−T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.34940304484581828034330966495, −17.79564483398594196729266581072, −17.210873511204681893359409591670, −16.23831390397263232135906712345, −15.555619091130322421016882183594, −15.060770096485996856193687535, −13.98913827497130164410647453056, −13.68096823766124792839477310523, −12.755453612582986353587944686842, −12.28384473705104713555394505624, −11.796491637343607512280916477810, −10.510435393682667246274415904817, −9.760831644070282206044645753974, −9.12030694479750979326106167644, −8.4696847678219152693647843563, −7.72042294931954208042378664089, −7.29552678249621660356086836418, −6.105213408080666984657938465937, −5.55423032044772550289089280661, −4.39804607205622889291815178531, −3.84226406774763506216563924197, −2.96719020636128739198712022682, −1.84363170970238104837173773031, −1.37394835078529829948422722445, −0.42426720361439241899988354514,
0.96949345499001001935529738991, 2.1933354803057867712821215817, 2.72440634163228187679433115537, 3.78492304750925274852847930168, 3.92646878792673910338905378216, 5.16904115875109012673742029546, 6.06159907839740733399584198462, 6.85452543699393621713505382457, 7.52703740071133868269814388053, 8.42352841138611773702846848826, 9.02764043216605833918463962819, 9.66055973564143971486681536280, 10.642698679368227298002343648947, 11.001888187029703302129837010175, 11.717783536338453807171032113129, 12.80253267805897245773539011709, 13.78174249636805193341613997164, 14.0838801421800144260570980788, 14.59690337643321909488299292781, 15.568055102528178393798055816866, 15.968701157351161569337229812308, 16.659473222067454536149932304006, 17.62550377135729206881973800573, 18.57375033179188410978466490559, 18.82796590986870160416931582444