L(s) = 1 | + (−0.540 − 0.841i)2-s + (−0.415 + 0.909i)4-s + (−0.755 + 0.654i)7-s + (0.989 − 0.142i)8-s + (0.841 + 0.540i)11-s + (0.755 + 0.654i)13-s + (0.959 + 0.281i)14-s + (−0.654 − 0.755i)16-s + (−0.909 + 0.415i)17-s + (0.415 − 0.909i)19-s − i·22-s + (0.142 − 0.989i)26-s + (−0.281 − 0.959i)28-s + (0.415 + 0.909i)29-s + (−0.142 − 0.989i)31-s + (−0.281 + 0.959i)32-s + ⋯ |
L(s) = 1 | + (−0.540 − 0.841i)2-s + (−0.415 + 0.909i)4-s + (−0.755 + 0.654i)7-s + (0.989 − 0.142i)8-s + (0.841 + 0.540i)11-s + (0.755 + 0.654i)13-s + (0.959 + 0.281i)14-s + (−0.654 − 0.755i)16-s + (−0.909 + 0.415i)17-s + (0.415 − 0.909i)19-s − i·22-s + (0.142 − 0.989i)26-s + (−0.281 − 0.959i)28-s + (0.415 + 0.909i)29-s + (−0.142 − 0.989i)31-s + (−0.281 + 0.959i)32-s + ⋯ |
Λ(s)=(=(345s/2ΓR(s+1)L(s)(−0.247+0.968i)Λ(1−s)
Λ(s)=(=(345s/2ΓR(s+1)L(s)(−0.247+0.968i)Λ(1−s)
Degree: |
1 |
Conductor: |
345
= 3⋅5⋅23
|
Sign: |
−0.247+0.968i
|
Analytic conductor: |
37.0753 |
Root analytic conductor: |
37.0753 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ345(152,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 345, (1: ), −0.247+0.968i)
|
Particular Values
L(21) |
≈ |
0.3921382068+0.5051420012i |
L(21) |
≈ |
0.3921382068+0.5051420012i |
L(1) |
≈ |
0.6933691942−0.05505722838i |
L(1) |
≈ |
0.6933691942−0.05505722838i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 23 | 1 |
good | 2 | 1+(−0.540−0.841i)T |
| 7 | 1+(−0.755+0.654i)T |
| 11 | 1+(0.841+0.540i)T |
| 13 | 1+(0.755+0.654i)T |
| 17 | 1+(−0.909+0.415i)T |
| 19 | 1+(0.415−0.909i)T |
| 29 | 1+(0.415+0.909i)T |
| 31 | 1+(−0.142−0.989i)T |
| 37 | 1+(−0.281+0.959i)T |
| 41 | 1+(0.959−0.281i)T |
| 43 | 1+(−0.989−0.142i)T |
| 47 | 1−iT |
| 53 | 1+(−0.755+0.654i)T |
| 59 | 1+(−0.654+0.755i)T |
| 61 | 1+(0.142+0.989i)T |
| 67 | 1+(−0.540−0.841i)T |
| 71 | 1+(−0.841+0.540i)T |
| 73 | 1+(−0.909−0.415i)T |
| 79 | 1+(−0.654+0.755i)T |
| 83 | 1+(−0.281+0.959i)T |
| 89 | 1+(0.142−0.989i)T |
| 97 | 1+(0.281+0.959i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−24.78877685880224484961212372116, −23.489018419505529707563459979341, −22.87373799659994884668544672021, −22.11387989330017369127930978506, −20.60930537320835217011657097186, −19.737458007913672261274784982888, −19.05598583912888696204695731820, −17.9774118652524770879977483975, −17.24047297658216170922528238356, −16.17236914653822031171079423599, −15.82841887998998582598084224951, −14.45989299243961113138816982184, −13.76826922310699406816479117056, −12.85076902415903466910834885398, −11.330810543076762619299955527725, −10.40523019351099635690926430609, −9.48314944755137750258583077968, −8.58922097883806647416623247265, −7.55583253104889324632421265872, −6.518304227239364206216092803304, −5.87488798811633955758317078183, −4.43552434303631787137453312958, −3.32219604134544901146404320899, −1.377200882474929146470084528703, −0.242896423794674304146210842437,
1.35955897278689044480456495673, 2.49449359318241105312537500763, 3.62903084621176671711665223778, 4.64288879142506088584093222453, 6.284428730016917692816071714284, 7.18321208195235926660643316663, 8.74011345393212711330499653927, 9.11529338988321220843620453846, 10.145802348096123707762946149327, 11.29221766293685971790590760734, 11.98034045061920351607771203085, 12.96871069312916398760283439211, 13.73442069736950070331825166200, 15.14132141350871707586606295328, 16.12055594901854629672307878510, 17.03941097296215853870723328594, 17.993041549469445596388834989566, 18.760795799566645170603754391182, 19.66875804073503189678432784537, 20.23676043527631832952455952187, 21.449002745262696842412521901350, 22.10898229080896039663603029231, 22.78314996177385716511698534683, 24.05503455375019624225872604108, 25.24120207019421839634350151202