L(s) = 1 | + (−0.961 − 0.275i)2-s + (−0.573 − 0.819i)3-s + (0.848 + 0.529i)4-s + (0.325 + 0.945i)6-s + (−0.933 + 0.358i)7-s + (−0.669 − 0.743i)8-s + (−0.342 + 0.939i)9-s + (−0.0523 + 0.998i)11-s + (−0.0523 − 0.998i)12-s + (−0.325 − 0.945i)13-s + (0.996 − 0.0871i)14-s + (0.438 + 0.898i)16-s + (−0.681 + 0.731i)17-s + (0.587 − 0.809i)18-s + (0.829 + 0.559i)21-s + (0.325 − 0.945i)22-s + ⋯ |
L(s) = 1 | + (−0.961 − 0.275i)2-s + (−0.573 − 0.819i)3-s + (0.848 + 0.529i)4-s + (0.325 + 0.945i)6-s + (−0.933 + 0.358i)7-s + (−0.669 − 0.743i)8-s + (−0.342 + 0.939i)9-s + (−0.0523 + 0.998i)11-s + (−0.0523 − 0.998i)12-s + (−0.325 − 0.945i)13-s + (0.996 − 0.0871i)14-s + (0.438 + 0.898i)16-s + (−0.681 + 0.731i)17-s + (0.587 − 0.809i)18-s + (0.829 + 0.559i)21-s + (0.325 − 0.945i)22-s + ⋯ |
Λ(s)=(=(3895s/2ΓR(s)L(s)(0.705+0.708i)Λ(1−s)
Λ(s)=(=(3895s/2ΓR(s)L(s)(0.705+0.708i)Λ(1−s)
Degree: |
1 |
Conductor: |
3895
= 5⋅19⋅41
|
Sign: |
0.705+0.708i
|
Analytic conductor: |
18.0883 |
Root analytic conductor: |
18.0883 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3895(1073,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3895, (0: ), 0.705+0.708i)
|
Particular Values
L(21) |
≈ |
0.4068178497+0.1690877144i |
L(21) |
≈ |
0.4068178497+0.1690877144i |
L(1) |
≈ |
0.4732039271−0.08648532110i |
L(1) |
≈ |
0.4732039271−0.08648532110i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
| 41 | 1 |
good | 2 | 1+(−0.961−0.275i)T |
| 3 | 1+(−0.573−0.819i)T |
| 7 | 1+(−0.933+0.358i)T |
| 11 | 1+(−0.0523+0.998i)T |
| 13 | 1+(−0.325−0.945i)T |
| 17 | 1+(−0.681+0.731i)T |
| 23 | 1+(0.0697+0.997i)T |
| 29 | 1+(0.731−0.681i)T |
| 31 | 1+(0.978−0.207i)T |
| 37 | 1+(0.951−0.309i)T |
| 43 | 1+(−0.241−0.970i)T |
| 47 | 1+(−0.190+0.981i)T |
| 53 | 1+(−0.974+0.224i)T |
| 59 | 1+(−0.961−0.275i)T |
| 61 | 1+(0.970+0.241i)T |
| 67 | 1+(0.731−0.681i)T |
| 71 | 1+(−0.974−0.224i)T |
| 73 | 1+(0.173−0.984i)T |
| 79 | 1+(−0.819+0.573i)T |
| 83 | 1+(0.866−0.5i)T |
| 89 | 1+(−0.0174−0.999i)T |
| 97 | 1+(−0.121+0.992i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.43663880167621435552080975679, −17.64099916981500797754784344230, −16.9281381620510626925287149057, −16.285599781250496220461889838729, −16.16968560611698563560816652984, −15.384480168649891000601823555725, −14.480105272465656833416947173236, −13.908875741245106103579030966113, −12.85182426504097802810803343155, −11.89336410443432911063587034605, −11.37674813185224058199779677177, −10.70539217202085072829602317015, −10.03510589840161224597428170036, −9.48060964226385759356951652009, −8.84119492052677543211831973809, −8.18669587932255312232955093778, −6.882942091874738077680041892699, −6.620869833221840600782885877090, −5.94592119012504233385692462040, −4.965986850959393592867242931620, −4.25090338135425024141857766097, −3.1266445172003805358116308620, −2.603520709306823014715445546746, −1.13120349827320923007346123584, −0.29814973198551866171216879944,
0.70980653218892957048093247310, 1.73221625098387730446528001135, 2.452798743534402850483097747063, 3.10797449744120178114224860110, 4.27865530398809904389044740342, 5.36978652361945990375395482617, 6.28111789629743097748630313037, 6.58460398096611748674684052295, 7.61596479631503574001529637873, 7.908811826392933882566319904438, 8.914110052672253336957420959182, 9.69435613691382032224158735761, 10.27266665751127174488883030456, 10.94178855873095429294607244563, 11.86475960395995742874253535985, 12.27774944096573888772788650830, 12.98337324638963907953566976637, 13.37224467178558198480531830730, 14.72214626192108290728286181523, 15.65647557921263146229167983532, 15.79230742237147917691742275932, 17.013172824259172602090025176887, 17.38016662735797060512831525806, 17.841244228455820273412226518909, 18.62568115115008100204550491738